Special Edition for CSEDU Students

TOUCH-N-PASS EXAM CRAM GUIDE SERIES

SOFTWARE ENGINEERING

relationship

Data How
diogram

di::grum

Interface
design

Archirectural
design
Data
design

The design madel

State-transition
diogram

I'he analysis modal

SAFEHOME

=]
-

gway
stay
instant
by pass
not racdy

= al

T

1
Ui
c :I;

o
|
0/

& 4

3_
e
g
() (=J8(-)s
n
5
A

g -
=l ]

:
B“
&1 g

i
a

folp

panic

Prepared By

Sharafat Ibn Mollah Mosharraf

CSE, DU
12" Batch (2005-2006)

Includes Solutions to DU

Software Engineering
Final Exam Questions of
5 Years (2003-2007)




TABLE OF CONTENTS

CHAPTER 1: THE PRODUCT ..ottt sttt e et et 1t e ettt a e s e e e e e e e e 1 e e s bbb e e e e e e e et neeneeaeennanas 1
CHAPTER 2: THE PROGCESS ...ttt mmmmmr ettt e ettt e e e e e e e e e e 1 e et e e e e e e e e aeeeneeas 4
CHAPTER 3: PROJECT MANAGEMENT CONCEPTS ...ttt ettt e e 11
CHAPTER 4: SOFTWARE PROCESSAND PROJECT METRICS .....ccoiiiiiie et 15
CHAPTER 5: SOFTWARE PROJECT PLANNING: ESTIMATION ....cciiiiiiiiiiiieiiiieiee e emm et e e e e 22
CHAPTER 6: RISK ANALYSIS & MANAGEMENT ...ttt ettt e e e e s 26
CHAPTER 12: ANALY SIS MODELING.......cotiiiititiiiee ittt e sttt e e s e e e e e e e e e e s asnnn e e e e s annnnnneeee s 29
CHAPTER 13: DESIGN CONCEPTS& PRINCIPLES ......ooiiiiiiic sttt 34
CHAPTER 16: SOFTWARE TESTING TECHNIQUES. ... ... 37

CHAPTER: MISCELLANEOQOUS QUESTIONS ...ttt ettt e e e e e e e e e s 43



CHAPTER 1

THE PRODUCT

Theories
1.1 Software Engineering

Software engineerinig:

(1) The application of a systematic, disciplined, qufeitle approach to the development,

operation and maintenance of software; that isafigication ofengineeringo software

(2) The study of approaches as in (1).

1.2 Software Characteristics

To gain an understanding of software (and ultinyaé@l understanding of software engineering), it
is important to examine the characteristics ofvgafe that make it different from other things that
human beings build. When hardware is built, the &oncreative process (analysis, design,
construction, testing) is ultimately translatedbir physical form. If we build a new computer, our
initial sketches, formal design drawings, and breadrded prototypeevolve into a physical product
(chips, circuit boards, power supplies, etc.).

Software is dogical rather than @hysicalsystem element. Therefore, software has charatitsyi
that are considerably different than those of hargw

1. Software is developed or engineered; it is notanufactured in the classical sense.

Although some similarities exist between softwaexelopment and hardware manufacture, the
two activities are fundamentally different.

In both activities, high quality is achieved thrbugood design, but the manufacturing phase for
hardware can introduce quality problems that areerstent (or easily corrected) for software.

Both activities are dependent on people, but thetiomship between people applied and work
accomplished is entirely differefit.

Both activities require the construction offadduct' but the approaches are different.

Software costs are concentrated in engineerings fieans that software projects cannot be
managed as if they were manufacturing projects.

A

2. Software doesn’t wear out.

Figure 1.1depicts failure rate as a function c
time for hardware. The relationship indicates tr
hardware exhibits relatively high failure rateslgar ¢
in its life (these failures are often attributaltte
design or manufacturing defects); defects ¢z
corrected and the failure rate drops to a stea
state level (ideally, quite low) for some period ¢
time. As time passes, however, the failure r¢
rises again as hardware components suffer fr
the cumulative affects of dust, vibration, abus Time
temperature  extremes, and many otl Figure 1.1: Failure curve for hardware.
environmental maladies. Stated simply, the hardwagens to wear out.

“Infant “Wear out”
mortality”

! Prototype: Full-scale working model of something built fougdy or testing or display.

2 A brief explanation on the point: Suppose, in hardware manufacturing, if 10 people groduce 100 items in 30 days, then
100 people will produce 100 items in 3 days. Soreéasing people would decrease time of manufagtufiherefore, if we get
behind schedule, we can add more people to catcliioyever, in case of software development, theaig not true. In the
words of Brooks: "adding people to a late softwareject makes it later." At first, this statemenay seem counterintuitive.
However, as new people are added, people who werking must spend time educating the newcomerseliyereducing the
amount of time spent on productive developmentrefReople can be added but only in a planned adosordinated manner.

1



Software is not susceptible to the environmen Increased failure
maladies that cause hardware to wear out. In the rate due to side
therefore, the failure rate curve for software $tiot sftes
take the form of th&ealized curveshown inFigure
1.2 Undiscovered defects will cause high failuig
rates early in the life of a program. However, &he ¢
are corrected (ideally, without introducing othe¢z
errors) and the curve flattens as shown. T
implication is clear — software doesn't wear ouit B
it does deteriorafé

lu

Change

\ / srizlors

Idealized curve

This seeming contradiction can best be explair Time
by considering thactual curveshown inFigure 1.2  Figure 1.2: Idealized and actual failure curves for software.
During its life, software will undergo change (nmamance). As changes are made, it is likely that
some new defects will be introduced, causing thlargarate curve to spike as shownHigure 1.2
Before the curve can return to the original stesidye failure rate, another change is requested,
causing the curve to spike again. Slowly, the mumimfailure rate level begins to rise — the software
is deteriorating due to change.

Another aspect of wear illustrates the differenedween hardware and software. When a
hardware component wears out, it is replaced lpagespart. There are no software spare parts. Every
software failure indicates an error in design othi@ process through which design was translatied in
machine executable code. Therefore, software nrante involves considerably more complexity
than hardware maintenance.

3. Most software is custom-built rather than beingassembled from existing components.

As an engineering discipline evolves, a collectmfnstandard design components is created.
Standard screws and off-the-shelf integrated dscure only two of thousands of standard
components that are used by mechanical and el@cergineers as they design new systems. The
reusable components have been created so thahgeeer can concentrate on the truly innovative
elements of a design, that is, gh&rts of the design that represent something newhd hardware
world, component reuse is a natural part of theirm®ging process. In the software world, it is
something that has only begun to be achieved opnadiscale.

4. Software is reusable.

A software component should be designed and impi&deso that it can be reused in many
different programs. Today, the view of reuse iaged to encompass not only algorithms but also
data structure. Modern reusable components encapdnbth data and the processing applied to the
data, enabling the software engineer to create ayaplications from reusable parts. For example,
today's graphical user interfaces are built usiegsable components that enable the creation of
graphics windows, pull-down menus, and a wide ¥aé interaction mechanisms. The data structure
and processing detail required to build the intmfare contained with a library of reusable
components for interface construction.

Questions

1.1 What characteristics of software make it diffeent from others? [2004, Marks: 4]
1. Software is developed or engineered; it is not méauiured in the classical sense.

Although some similarities exist between softwarevedlopment and hardware
manufacture, the two activities are fundamentalffecent. For example, in both activities,
high quality is achieved through good design, et thanufacturing phase for hardware can
introduce quality problems that are nonexistene@sily corrected) for software.

% Deteriorate: Become worse or disintegrate.



Software doesn’t ‘wear out’

Software is not susceptible to the environmentdhdias that cause hardware to wear out.
However, due to changes made to software, it cetdds.

...Include the figures 1.1 and 1.2 here...
Most software is custom-built rather than being &ssbled from existing components.

In the hardware world, component reuse is a napadlof the engineering process. In the
software world, it is something that has only betjube achieved on a broad scale.



CHAPTER 2
THE PROCESS

Theories

2.1

2.2

2.3

Software Process

When a product or system is built, it's importamgb through a series of predictable steps — a
road map that helps to create a timely, high-quasisult. The road map followed is calleddaitware
process

From a technical point of view, a software prodsstefined as a framewdrkor the tasks that are
required to build high-quality software.

Software Engineering Layers

FIGURE 2.1

Software Tools
enginearing : \"'-'-'————_--"’ -

loyars Methods

A quality focus

The foundation for software engineering is grecess layerSoftware engineering process is the
glue that holds the technology layers together andbles rational and timely development of
computer software. Process defines a frameworlafeet of key process areas (KPAs) that must be
established for effective delivery of software ewgring technology. The key process areas form the
basis for management control of software projectd astablish the context in which technical
methods are applied, work products (models, doctenefata, reports, forms, etc.) are produced,
milestones are established, quality is ensuredchadge is properly managed.

Software engineeringnethodsprovide the technical how-to's for building softea Methods
encompass a broad array of tasks that include nergents analysis, design, program construction,
testing, and support. Software engineering methelyson a set of basic principles that govern each
area of the technology and include modeling aetisiand other descriptive techniques.

Software engineeringpols provide automated or semi-automated support foptbeess and the
methods. When tools are integrated so that infaomatreated by one tool can be used by another, a
system for the support of software developmentledatomputer-aided software engineering, is
established. CASE combines software, hardware,aasdftware engineering database (a repository
containing important information about analysissige, program construction, and testing) to create
software engineering environment analogous to CABEGcomputer-aided design/engineering) for
hardware.

A Generic View of Software Engineering

The work associated with software engineering cancétegorized into three generic phases,
regardless of application area, project size, onglexity. Each phase addresses one or more of the
guestions noted previously.

The definition phasdocuses omwhat That is, during definition, the software enginagempts to
identify what information is to be processed, whaiction and performance are desired, what system
behavior can be expected, what interfaces are teskablished, what design constraints exist, and
what validation criteria are required to definauacessful system. The key requirements of the syste
and the software are identified. Although the mdthapplied during the definition phase will vary
depending on the software engineering paradignecgorbination of paradigms) that is applied, three

* Framework: A structure supporting or containing something.

® |s software processynonymous witlsoftware engineerirg The answer igesandno. A software process defines the approach
that is taken as software is engineered. But sofiveagineering also encompasses technologies timtigie the process —
management and technical methods and automatedd tool

4



2.4

2.5

major tasks will occur in some form: system or miation engineering, software project planning,
and requirements analysis.

The development phadecuses omow. That is, during development a software engindengts
to define how data are to be structured, how foncis to be implemented within a software
architecture, how procedural details are to be emgnted, how interfaces are to be characterized,
how the design will be translated into a prograngrianguage (or nonprocedural language), and how
testing will be performed. The methods applied myrihe development phase will vary, but three
specific technical tasks should always occur: saféendesign, code generation, and software testing.

The support phaséocuses orthangeassociated with error correction, adaptationsireduas the
software's environment evolves, and changes duentmncements brought about by changing
customer requirements. The support phase reaptleesteps of the definition and development
phases but does so in the context of existing soéwkFour types of change are encountered during
the support phase: correction, adaption, enhandeanenprevention.

The Software Process Model FIGURE 2.3

(@) The pheses Prablem
A process model for software ;' orobiem definition

engineering is chosen based on tlsiving lcop
nature of the project and applicatior 451

the methods and tools to be used, a ; ”"T & phases
the controls and deliverables that a ««

Technical
development

required. ?%,_L%ﬁwis

All software development can be
characterized as a problem solvin Solutian
loop (depicted in the figure beside) il infegration
which  four distinct stages are

encountered: status quo, proble {al
definition, technical development, an
solution integration.

Status quo “represents the curre
state of affairs”; problem definition
identifies the specific problem to b
solved; technical development solve
the problem through the application ¢
some technology, and solutiol
integration delivers the results (e.g
documents, programs, data, ne
business function, new product) t
those who requested the solution in tt
first place.

The Linear Sequential / Waterfall / Classic Lié Cycle Model

System/ information
engineering

Analysis Code Test

Figure 2.5: The Linear Sequential Model.



System / Information engineering and modeling:

System engineering and analysis — encompass retgnte gathering at the system level with a
small amount of top level design and analysis.

Information engineering — encompasses requirengattering at the strategic business level and
at the business area level.

Software requirement analysis:

» Information domain (data and events) for the soféwa
» Required function, behavior, performance, and fatey.

Design:

» Data structure

» Software architecture

» Interface representations

» Procedural (algorithmic) detail.

Code generation:
The design is translated into a machine-readaloie.fo
Testing:

» Logical internals of the software — ensuring tHhst@atements have been tested
» Functional externals — conducting tests to uncevears and ensure that defined input will
produce actual results that agree with requiredites

Support:

Software will undoubtedly undergo change aftersitdelivered to the customer. Changes will
occur because:

» Errors have been encountered

» The software must be adapted to accommodate changesxternal environment (e.g., a
change required because of a new operating systeeripheral device)

» The customer requires functional or performanceaeoéments.

Limitations / Problems of Linear Sequential Model:

1. Real projects rarely follow the sequential flow tthhe model proposes. Although the
linear model can accommodate iteration, it doesndaectly. As a result, changes can
cause confusion as the project team proceeds.

2. It is often difficult for the customer to state akquirements explicitly. The linear
sequential model requires this and has difficultgcanmodating the natural uncertainty
that exists at the beginning of many projects.

3. The customer must have patience. A working versibrthe program(s) will not be
available until late in the project time-span. A jomablunder, if undetected until the
working program is reviewed, can be disastrous.

2.6 The Prototyping Model
Why needed?

» Often, a customer defines a set of general objestior software but does not identify
detailed input, processing, or output requirements.

» The developer may be unsure of the efficiency ofalgorithm, the adaptability of an
operating system, or the form that human/machiteraction should take.



2.7

Description

» Developer and customer meet ar
define the overall objectives foi Listen to
the software. customer

Build/revise
mock-up

» A quick design occurs focusing ol
those aspects of the software th
will be visible to the customer /
user (e.g., input approaches ar
output formats). The quick desigi
leads to the construction of
prototype.

» The prototype is evaluated by th VE-{*

customer / user and used to refir._
requirements for the software to £~ Figure 2.6: The Prototyping Model.
developed.

Customer
test drives
mock-up

» lteration occurs as the prototype is tuned to fyati'e needs of the customer, while at the
same time enabling the developer to better undetstdnat needs to be done.

Limitations / Problems of Prototyping Model:

1. Customer is unaware that nobody considered quaitiye software. When he is informed that
the software needs to be rebuilt, he demands tleavdixes should be applied to make the
prototype a working product rather than rebuilding.

2. The developer forgets that some inappropriate dlgos were implemented.
The Spiral Model

Why needed?

Because, software is evolutionary. They evolve @vperiod time.

Planning

Customer Risk analysis

communication

Project entry
point axis

Engineering

Customer
evaluation

I:l Product maintenance projects
I:l Product enhancement projects
:l New product development projects
- Concept development projects

Figure 2.7: The Spiral Model.

Construction & release



Description

» The model is divided into a numbertakk regiongi.e., framework activities):

» Customer communication — tasks required to establish effective commuriocat
between developer and customer.

* Planning — tasks required to define resources, timelinesl ather project-related
information.

» Risk analysis— tasks required to assess both technical and geament risks.
* Engineering — tasks required to build one or more represesmatof the application.

» Construction and release— tasks required to construct, test, install, pralvide user
support (e.g., documentation and training).

Each of the regions is populated by a set of waskg, called a task set, that are adapted
to the characteristics of the project to be undtera

» As this evolutionary process begins, the softwargireeering team moves around the
spiral in a clockwise direction, beginning at tleater.

» The first circuit around the spiral might result the development of a product
specification; subsequent passes around the spigilt be used to develop a prototype
and then progressively more sophisticated versbitise software.

» Each pass through the planning region results justrdents to the project plan. Cost and
schedule are adjusted based on feedback deriveddustomer evaluation.

Questions

2.1 Give a generic overview of software engineeringVhat is software process? Describe the
software process model. [2003, Marks: 5]

See Theories 2.3, 2.1 and 2.4.

2.2 What is the difference between a software processauel and a software process? Suggest
two ways in which a software process model might bieelpful in identifying possible process
improvements. [2005, Marks: 5]

2.3 Briefly describe the linear sequential software engeering model. Why does the linear model
sometimes fail? [2004, Marks: 6]

The linear sequential software engineering model:
This model encompasses the following activities:
System / information engineering and modeling:

System engineering and analysis encompass requitergathering at the system level with a
small amount of top level design and analysis. rmittion engineering encompasses requirements
gathering at the strategic business level andeabtisiness area level.

Software requirement analysis:

To understand the nature of the program(s) to bk, hbe software engineeragalys) must
understand the information domain for the softwaas, well as required function, behavior,
performance, and interface.

Design:

The design process translates requirements intepeesentation of the software that can be
assessed for quality before coding begins. Softwhsign focuses on data structure, software
architecture, interface representations and alyord detail.



2.4

2.5

Code generation:

The design is translated into a machine-readaloie.fo

Testing:

The testing process focuses on the logical internélthe software, ensuring that all statements
have been tested; and on the functional extertiasjs, conducting tests to uncover errors andrens
that defined input will produce actual results thgtee with required results.

Support:

Software support / maintenance reapplies eachegbithceding phases to an existing program.
...Include the figure of this model here
Reasons for failure of this model:

1. As real projects are evolutionary, they rarely doll the sequential flow that the model
proposes.

2. Often, the customer cannot state all his requirésne®o, after all the processing steps are
done, he demands some changes which causes miichitgiif this model is followed.

3. The customer has to wait long for a working versabnthe program to be available. A major
blunder, if undetected until the working progranmndasiewed, can be disastrous.

Describe the waterfall model of software process. Wat are the difficulties to follow waterfall
model in developing real life systems? How can thesbe accomplished in the spiral process
model? [2006, 2007. Marks: 6]

OR, Provide a comparative analysis of the waterfalind spiral models. [In-course 1, 2008. Marks: 5]

See Question 2.3 for the waterfall model and ntstétions
How can the difficulties of the waterfall model lccomplished in the spiral process model:

In the spiral process model, a number of frameveativities (customer communication, planning,
risk analysis, engineering, construction and regase performed linearly, but by circuiting arouand
spiral where each pass results in adjustmentstpriiject plan according to customer feedback.

Hence, in spiral model, the customer can get a wgrkersion of the program quickly and
provide suggestions and comments. Thus, progranbearthanged quickly and efficiently, and the
evolutionary nature of the program can also be mocodated easily.

Explain how both the waterfall model of the softwae process and the prototyping model can
be accommodated in the spiral process model. [20(8)05. Marks: 5]

In the spiral process model, a number of framewackvities (known as task regions) are
performed:

» Customer communication — tasks required to establish effective commuiocabetween
developer and customer.

* Planning — tasks required to define resources, timelined,aher project-related information.

* Risk analysis— tasks required to assess both technical and geamant risks.

* Engineering — tasks required to build one or more represearatof the application.

» Construction and release— tasks required to construct, test, install, pravide user support.

These activities are performed sequentially just In the waterfall model (requirement analysis,
design, coding, testing, support).

However, in the spiral model, the software engimgeteam circuits around the spiral in a
clockwise direction. The first circuit might resuhh the development of product specification;
subsequent passes might be used to develop ayp®t@&nd then progressively more sophisticated
versions of the software. Each pass through thenplg region results in adjustments to the project
plan. Cost and schedule are adjusted based ondeedierived from customer evaluation. This is



2.6

similar to the prototyping model where customerdfesck is used to refine requirements for the
software.

Thus, both the waterfall model and the prototypmgdel can be accommodated in the spiral
process model.

...Include the figure of this model here

Describe the prototyping model of software engine@rg with some example software systems
where it can be used most successfully. [2004, Mak; 2006, 2007, Marks: 4]

The prototyping model of software engineering:

Write the ‘description’ part of Theory 2.6 and prde the figure therein. Include the limitations of
this model if you have enough time.

Example software systems where prototyping model loa used most successfully:

It has been found that prototyping is very effegtin the analysis and design of on-line sysfems
especially for transaction processing, where theeaisscreen dialogs is much more in evidence. The
greater the interaction between the computer aeduier, the greater the benefit is that can be
obtained from building a quick system and letting tiser play with it.

Prototyping is especially good for designing goadhan-computer interfaces.

® On-line System:Connected to a computer network or accessibleobpater. For example: on-line database etc.

10



CHAPTER 3
PROJECT MANAGEMENT CONCEPTS

Theories

3.1 Project Management

Project management involves the planning, monitpramd control of the people, process, and
events that occur as software evolves from a preing concept to an operational implementation.

Effective software project management focuses erfdbr P’s:people product processand
project The order is not arbitrary.

3.2 Description of the four P’s
The People
» The people are the most important contributorsgaaessful software project.

» The people management maturity model defines tilewimg key practice areas for
software people: recruiting, selection, performan@nagement, training, compensation,
career development, organization and work desig t@am / culture development.

» Organizations that achieve high levels of maturtyhe people management area have a
higher likelihood of implementing effective softveagngineering practices.
The Product

» Before a project can be planngatoduct objectives and scomhould be established,
alternative solutions should be considered, antinieal and management constraints
should be identified.

» Without this information, it is impossible to defimeasonable (and accurate) estimates of
the cost, an effective assessment of risk, a tealseakdown of project tasks, or a
manageable project schedule that provides a mefahindication of progress.

» The software developer and customer must meetfioedgroduct objectives and scope.

» Objectives identify the overall goals for the prot{from the customer’s point of view)
without considering how these goals will be achteve

» Scope identifies the primary data, functions andal@rs that characterize the product,
and more important, attempts to bound these clarsiits in a quantitative manner.

» Once the product objectives and scope are undeksatternative solutions are considered.

The Process

A software process provides the framework from Wwhe& comprehensive plan for software
development can be established.

The Project

In order to avoid project failure, a software pojmanager and the software engineers who build
the product must:

» Avoid a set of common warning signs.
» Understand the critical success factors that leagbbd project management.
» Develop a commonsense approach for planning, mamgt@and controlling the project.

11



3.3 Detailed study ofpeople

In this section, we examine the players who paudis in the software process and the manner in
which they are organized to perform effective saftsvengineering.

The Players

1.

5.

Senior managerswho define the business issues that often hawvefis@nt influence on the
project.

Project (technical) managersvho must plan, motivate, organize, and controlptaetitioners
who do software work.

Practitioners who deliver the technical skills that are necessaengineer a product or
application.

Customerswho specify the requirements for the softwaredge@hgineered and other
stakeholdersvho have a peripheral interest in the outcome.

End-userswho interact with the software once it is releaf@dgroduction use.

Team Leaders

Characteristics a team leader should have

There are two views regarding the characteristiasd team leader should have:

The MOI model of leadership Suggested by Weinberg

Motivation. The ability to encourage (lpush or pul) technical people to produce to their best
ability.

Organization. The ability to mold existing processes (or inveatv ones) that will enable the
initial concept to be translated into a final produ

Ideas or innovation. The ability to encourage people to create and desdtive even when
they must work within bounds established for aipaldr software product or application.

Weinberg suggests that successful project leadgply @ problem solving management
style. That is, a software project manager shoalttentrate on understanding the problem to
be solved, managing the flow of ideas, and at Hmestime, letting everyone on the team
know (by words and, far more important, by actias) quality counts and that it will not be
compromised.

Another View

Problem solving. An effective software project manager can diagntiee technical and
organizational issues that are most relevant, syaieally structure a solution or properly
motivate other practitioners to develop the solytapply lessons learned from past projects to
new situations, and rematlexible enough to change direction if initial attpts at problem
solution are fruitless.

Managerial identity. A good project manager must take charge of theegroHe must have
the confidence to assume control when necessaryhendssurance to allow good technical
people to follow their instincts.

Achievement.To optimize the productivity of a project teammanager must reward initiative
and accomplishment and demonstrate through hisamtrans that controlled risk taking will
not be punished.

Influence and team building. An effective project manager must be abledad people; he
must be able to understand verbal and nonverballsigand react to the needs of the people
sending these signals. The manager must remairr sad#&ol in high-stress situations.

12



The Software Team

Thebestteam structure depends on the management stylmioforganization, the number of
people who will populate the team and their sklldls, and the overall problem difficulty. Mantei
suggests three generic team organizations:

Democratic decentralized (DD).This software engineering team has no permanadete
Rather, task coordinators are appointed for shawtbns and then replaced by others who may
coordinate different tasks. Decisions on problentsapproach are made by group consensus.
Communication among team members is horizontal.

Controlled decentralized (CD).This software engineering team has a defined teabe
coordinates specific tasks and secondary leadathi#tve responsibility for subtasks. Problem sgjvin
remains a group activity, but implementation otusions is partitioned among subgroups by the team
leader. Communication among subgroups and indilsdaanorizontal. Vertical communication along
the control hierarchy also occurs.

Controlled Centralized (CC). Top-level problem solving and internal team cooadion are
managed by a team leader. Communication betwedrdter and team members is vertical.

Mantei describes seven project factors that shibelldonsidered when planning the structure of
software engineering teams:

* The difficulty of the problem to be solved.

*» The size of the resultant program(s) in linesade or function points.
* The time that the team will stay together (tedatime).

» The degree to which the problem can be moduldrize

* The required quality and reliability of the systéo be built.

* The rigidity of the delivery date.

* The degree of sociability (communication) reqdifer the project.

The impact of project characteristics on team stinec

DD CD CC Explanation

Difficulty Because a centralized structure completes tasksr fasis the most

High N adept at handling simple problems. Decentralizachtegenerate more

Low \ \ and better solutions than individuals. Thereforehsteams have a
greater probability of success when working onidift problems.

Size Because the performance of a team is inverselygotiopal to the

Large N N amount of communication that must be conductedy l@ge projects

Small \ are best addressed by teams with a CC or CD stasctwhen
subgrouping can be easily accommodated.

Team Lifetime The length of time that the team will "live togetheffects team

Long N mora_le. It ha_s begn found that DD team structwgsslt in high morale

Short \ \ and job satisfaction and are therefore good fomgedhat will be
together for a long time.

Modularity The DD team structure is best applied to probleritk welatively low

High N \ modularity, because of the higher volume of commatidbn needed.

Low \ When high modularity is possible (and people catheédr own thing),
the CC or CD structure will work well.

Reliability CC and CD teams have been found to produce fewectdethan DD

High \ \ teams, but these data have much to do with theifepepality

Low ./ assurance activities that are applied by the team.

Delivery Date Decentralized teams generally require more timeotoplete a project

Strict \ than a centralized structure and at the same timéest when high

Lax N N sociability is required.

Sociability

High v

Low \ \

13



Questions

3.1 Describe the importance of a team leader in aolware project. What are the major
characteristics that a team leader should have? [28, 2007, Marks: 5]
Importance of a team leader in a software project

Project management is a people-intensive actiaty for this reason, competent practitioners
often make poor team leaders. They simply don’'tehthe right mix of people skills. And yet, as
Edgemon states: “Unfortunately and all too freglyernitseems, individuals just fall into a project
manager role and become accidental project managersrefore, to be effective, a project team
must be organized in a way that maximizes eactope&rskills and abilities. And that’s the job okth
team leader.

Major characteristics of a team leader
See the MOI model of leadersitip Theory 3.3.

3.2 Describe briefly the different team organizatios along with impact of project characteristics
on team structure. [In-course 1, 2008. Marks: 5]

See Theory 3.3 — The Software Team.

14



CHAPTER 4
SOFTWARE PROCESS AND PROJECT METRICS

Theories

4.1

4.2

4.3

Software Process and Project Metrics

Software process and product metrics are quanttatieasures that enable software people to
gain insight into the efficadyof the software process and the projects thatanelucted using the
process as a framework. Basic quality and prodiigtidata are collected. These data are then
analyzed, compared against past averages, andegtedetermine whether quality and productivity
improvements have occurred. Metrics are also usgihpoint problem areas so that remedies can be
developed and the software process can be improved.

Measures, Metrics and Indicators

Within the software engineering context, a meagu@ides a quantitative indication of the
extent, amount, dimension, capacity, or size ofesaiftribute of a product or process. Measurement is
the act of determining a measure. The IEEE Stan@do$sary of Software Engineering Terms
defines metric as “a quantitative measure of thgreke to which a system, component, or process
possesses a given attribute.”

When a single data point has been collected (g number of errors uncovered in the review of
a single module), a measure has been establishegsuvEment occurs as the result of the collection
of one or more data points (e.g., a number of meodeNiews are investigated to collect measures of
the number of errors for each). Software metriatesd the individual measures in some way (e.g., the
average number of errors found per review or theraye number of errors found per person-hour
expended on reviews).

A software engineer collects measures and devetgpscs so that indicators will be obtained. An
indicator is a metric or combination of metrics tthmovide insight into the software process, a
software project, or the product itself. An indmaprovides insight that enables the project manage
or software engineers to:

1. Assess the status of an ongoing project.

2. Track potential risks.

3. Uncover problem areas before theyagiical.

4. Adjust work flow or tasks.

5. Evaluate the project team’s ability to control qgiyabf software work products.

For example, four software teams are working orargd software project. Each team must
conduct design reviews but is allowed to selecttype of review that it will use. Upon examination
of the metric, errors found per person-hour expdntlee project manager notices that the two teams
using more formal review methods exhibit an errfosnd per person-hour expended that is 40
percent higher than the other teams. Assumingthrgparameters equal, this provides the project
manager with an indicator that formal review methothy provide a higher return on time investment
than another less formal review approach. He mayddeto suggest that all teams use the more
formal approach. The metric provides the manageh wisight. And insight leads to informed
decision making.

Software Measurement

Measurements in the physical world can be categdrin two ways: direct measures (e.g., the
length of a bolt) and indirect measures (e.qg., ghality of bolts produced, measured by counting
rejects). Software metrics can be categorized arhyil

Direct measuresof the software engineering process include cost effort applied. Direct
measures of the product include lines of code (LP@puced, execution speed, memory size, and
defects reported over some set period of timeirect measuresf the product include functionality,
guality, complexity, efficiency, reliability, maiainability etc.

" Efficacy: Capacity or power to produce a desired effect.

15



4.4

4.5

Size-oriented Metrics
Project LocC Effort |$(000) | Pp. doc. | Errors | Defects | People

Size-oriented software metrics ar

i 171 i Iph 12,100 24 168 365 134 29 3
derlved. py normalizing quallty gnd/ow pipha aoe | s | e | aen | a 2 2
productivity measures by considering tr|gomma | 20200 | 43 | 314 | 1050 | 256 64 6
size of the software that has bee . . . . . .
produced. If a software organizatio| ! . . '_ . .

maintains simple records, a table of siz
oriented measures, such as the one shc
in Figure 4.4 can be created. The tabl\

lists each software development proje N ————

that has been completed over the past f N—_""*-\___

years and corresponding measures for tl TN
project. Figure 4.4: Size-oriented Metrics.

In order to develop metrics that can be assimilatéd similar metrics from other projects, we
choosdlines of codeas our normalizatidhvalue. From the rudimentary data contained intdhée, a
set of simple size-oriented metrics can be develdpeeach project:

* Errors per KLOC (thousand lines of code).
« Defectd per KLOC.

* $ per LOC.

» Page of documentation per KLOC.

In addition, other interesting metrics can be cotegu

* Errors per person-month.
» LOC per person-month.
* $ per page of documentation.

Advantages of size-oriented metrics (i.e., the LO@easure)

1. LOC is an artifacf of all software development projects that candsilg counted.
2. Many existing software estimation models use LO®IoDC as a key input.
3. Alarge body of literature and data predicated @Clalready exists.

Disadvantages of size-oriented metrics

1. LOC measures are programming language dependent.

2. They penalize well-designed but shorter programs.

3. They cannot easily accommodate nonprocedural layggua

4. Their use in estimation requires a level of detaalt may be difficult to achieve (i.e., the
planner must estimate the LOC to be produced lafgre analysis and design have been
completed).

Function-oriented Metrics

Function-oriented software metrics use a measutkeofunctionality delivered by the application
as a normalization value. Since functionality carm@measured directly, it must be derived indiyect
using other direct measures. Function-oriented iosetire based on a measure calledftimetion
point Function points are derived using an empiricdhtienship based on countable (direct)
measures of software's information domain and ass&ss of software complexity.

Function points are computed by completing theetablown inFigure 4.5 Information domain
values are defined in the following manner:

Number of user inputs. Each user input that provides distinct applicatoiented data to the
software is counted. Inputs should be distinguidheah inquiries, which are counted separately.

8 Normalize: Make normal / Cause to conform to a standard.

° A defect occurs when quality assurance activifees., formal technical reviews) fail to uncover emor in a work product
produced during the software process.

10 Artifact: A man-made object taken as a whole.

16



Number of user outputs. Weighting factor
Each user output tha
provides application-orientec
information to the user is
counted. In this context Number of user outputs
output refers to reports

Number of user inquiries X 3 4 6 =
screens, error messages, € e ]

Measurement parameter Count Simple Average Complex

Number of user inputs X 3 4 6 =

Individual data items within a Number of files
report are not countec

ooooo

Number of external interfaces X 5 7 10 =
separately.
Count fotal -
Number  of  user
inquiries. An inquiry 1S Figure 4.5: Computing Function Points.

defined as an on-line input
that results in the generation of some immediafevaoe response in the form of an on-line output.
Each distinct inquiry is counted.

Number of files. Each logical master file (i.e., a logical groupwfgdata that may be one part of a
large database or a separate file) is counted.

Number of external interfaces.All machine readable interfaces (e.g., data filestorage media)
that are used to transmit information to anothstesy are counted.

Once these data have been collected, a complexiyevis associated with each count.
Organizations that use function point methods dgveriteria for determining whether a particular
entry is simple, average, or complex. Nonethelé&ss, determination of complexity is somewhat
subjective™.

To compute function points (FP), the following tedaship is used:

FP = count total x [0.65 + 0.01 ¥4 F; ]
where count total is the sum of all FP entries ioleh fromFigure 4.5

TheF; (i = 1 to 14) areomplexity adjustment valubased on responses to the following
guestions:

Does the system require reliable backup and reg@ver

Are data communications required?

Are there distributed processing functions?

Is performance critical?

Will the system run in an existing, heavily utilzeperational environment?
Does the system require on-line data entry?

Does the on-line data entry require the input tatisn to be built over multiple screens or
operations?

8. Are the master files updated on-line?

9. Are the inputs, outputs, files, or inquiries conxdle

10.1s the internal processing complex?

11.1s the code designed to be reusable?

12. Are conversion and installation included in theigie®

13.1s the system designed for multiple installatiamslifferent organizations?
14.1s the application designed to facilitate change @&se of use by the user?

Nogok,rwhE

1 Subjective: Taking place within the mind which is modified ingividual bias. [In easy words — according to enewn will /
choice / emotion]. The antonym of subjectiveolsiective which means “undistorted by emotion or persoriakbbased on
observable phenomena” [in easy wordegically, notemaotionally.

17



4.6

Each of these questions is answered using the lsekdes:

0 — Not important or applicable / No influence
1 — Incidental / Rarely needed

2 — Moderate
3 — Average

4 — Significant
5 — Essential

The constant values in the equation and the weiglitictors that are applied to information
domain counts are determined empiricklly

Once function points have been calculated, theyisee in a manner analogous to LOC as a way
to normalize measures for software productivityaliy, and other attributes:

* Errors per FP.

« Defects per FP.

* $ per FP.

» Pages of documentation per FP.
* FP per person-month.

Extended Function Point Metrics
Feature Points

The feature point measure accommodates applicaiondich algorithmic complexity is high.
Real-time, process control and embedded softwamdicafions tend to have high algorithmic
complexity and are therefore amenable to the fegiamt.

To compute the feature point, information domairtuga are again counted and weighted as
described in function point metrics. In additiometfeature point metric counts new software
characteristic—algorithms An algorithm is defined as "a bounded computaiqmroblem that is
included within a specific computer program”. Inugg a matrix, decoding a bit string, or handlimg a
interrupt are all examples of algorithms.

3D Function Point
To compute 3D function points, the following retatship is used:
index=1+0O+Q+F+E+T+R

wherel, O, Q, F, E, T, andR represent complexity weighted values for the el@séliscussed
already: inputs, outputs, inquiries, internal dat@uctures, external files, transformation, and
transitions, respectively. Each complexity weightedlue is computed using the following
relationship:

complexity weighted value gcure a.6

S ti
= NyWj + NiaWia + NipWip, Determining the sfuTeumne:;rs
complexity of o
where Nii, Nia, and Nih  tremsformetion 1-5 6-10 11+
for 3D function .
represent the num_ber O erWiios, | Processing
occurrences of elememt(e.g., steps
outputs) for each level of
complexity (low, medium, 1-10 Low Low Average
high); andW;, W,, andW, are
the corresponding weights. Thi 11-20 . Average High
. - W |
overall complexity of a
transformation for 3D function
points is shown in the figure 21+ Average High High
beSide- .|

12 Empirical: Derived from experiment and observation rathen theory.

18



4.7 Metrics for Software Quality
Measuring Quality

1. Correctness
Correctness is the degree to which the softwarties its required function. The most
common measure for correctness is defects per KiM@€re a defect is defined as a verified
lack of conformance to requirements.

2. Maintainability
Maintainability is the ease with which a programnche corrected if an error is
encountered, adapted if its environment changesnloanced if the customer desires a change
in requirements.

3. Integrity

This attribute measures a system's ability to wathd attacks (both accidental and
intentional) to its security. Attacks can be made al three components of software:
programs, data, and documents.

To measure integrity, two additional attributes mbe defined:threat and security
Threat is the probability (which can be estimatedi@rived from empirical evidence) that an
attack of a specific type will occur within a givéme. Security is the probability (which can
be estimated or derived from empirical evidencel tihhe attack of a specific type will be
repelled. The integrity of a system can then benddfas

integrity = Y. [(1 - threat) X (1- security)]
wherethreatandsecurityare summed over each type of attack.

4. Usability

Usability is an attempt to quantify user-friendseand can be measured in terms of four
characteristics:
a. The physical and or intellectual skill requiredearn the system.
b. The time required to become moderately efficierthmuse of the system.
c. The net increase in productivity (over the approtdt the system replaces) measured
when the system is used by someone who is modgeftalient.
d. A subjective assessment (sometimes obtained thraughestionnaire) of users attitudes
toward the system.

Defect Removal Efficiency (DRE)

DRE is a measure of the filtering ability of qualassurance and control activities as they are
applied throughout all process framework activities

When considered for a project as a whole, DRE fimél@ in the following manner:
DRE =E/(E + D)

whereE = The number of errors found before delivery & sloftware to the end-user
D = The number of defects found after delivery

The ideal value for DRE is 1. That is, no defecesfaund in the software.

Questions
4.1 Define and describe the measures, metrics anadicators in relation to their importance to
software engineering. [2005, 2006, 2007. Marks: 4]
Measures

Within the software engineering context, a meagu@ides a quantitative indication of the
extent, amount, dimension, capacity, or size ofesatribute of a product or process. For example,

19



4.2

4.3

lines of code (LOC), efficiency (amount of persoosth) etc.
Metrics:

Metric can be defined as a quantitative measurtheidegree to which a system, component, or
process possesses a given attribute. Softwareamelates the individual measures in some way,(e.g.
the average number of errors found per review.etc.)

Indicators:

An indicator is a metric or combination of metrtbsit provide insight into the software process, a
software project, or the product itself. An indmaprovides insight that enables the project manage
or software engineers to adjust the process ogpithject to make things better.

Importance of measures, metrics and indicators tdte/are engineering:

If software isnot measured, judgement can be based only on sulgeetnaluation. With
measurement, trends (either good or bad) can beedpdetter estimates can be made, and true
improvement can be accomplished over time.

Discuss the size-oriented metrics and functigmeint metrics. Compute the function-point
value for the project with the following information domain characteristics:

Number of inputs: 24
Number of outputs: 45
Number of files: 40
Number of inquiries: 90

Number of external interfaces: 4
Assume all complexity adjustment values are averagf005, Marks: 6]
Size-oriented metrics:

Size-oriented software metrics are derived by ndmng quality and/or productivity measures by
considering the size of the software that has ljgeduced. If a software organization maintains
simple records, a table of size-oriented measusasbe created, where each software development
project that has been completed over the past &awrsyand corresponding measures for that project
are listed.

In order to develop metrics that can be assimilatgld similar metrics from other projectines
of codeis chosen as normalization value. From the rudtargrdata contained in the table, a set of
simple size-oriented metrics can be developeddoh roject, for example errors per KLOC, defects
per KLOC etc.

Function-oriented metrics:

Function-oriented software metrics use a measutkeofunctionality delivered by the application
as a normalization value. Function-oriented metaies based on a measure calledftimetion point
Function points are derived using an empiricalti@fship based on countable (direct) measures of
software's information domain and assessmentsfvfa@ complexity.

Here, the project planner estimates inputs, outpodgiiries, files, external interfaces and each of
the complexity weighting factors; and computes tmemplexity adjustment factor. Finally, the
estimated number of FP is derived using the follgdormula:

FP = count total x [0.65 + 0.0132, F; ]
Solution to mathematical Problem:
FP=(24x4+45x5+40x10+90 x4 +4 x TP65 + 0.01 x (3 x 14)] = 1186.63

What is a function point? What will be the funtion-point value for a project with the
following information domain characteristics:

Number of inputs: 30
Number of outputs: 55

20



Number of files: 24
Number of inquiries: 8
Number of external interfaces: 2

Assume all complexity adjustment values are averagf2004, Marks: 6]
Function Point:

A function point is a unit of measurement to exprédse amount of business functionality an
information system provides to a user.

Function points are derived using an empiricaltr@fship based on countable (direct) measures
of software's information domain and assessmergsfofvare complexity.

Solution to mathematical Problem:
FP=B0x4+55x5+24x10+8x4+2x7TP65+0.01 x (3 x14)] =728.67

Compute the function-point value for the project wih the following information domain
characteristics:

Number of inputs: 32
Number of outputs: 60
Number of files: 8
Number of inquiries: 24

Number of external interfaces: 2

Assume that all complexity adjustment values are arage. Assume that 14 algorithms have
been counted. Compute feature point value under theame condition. [2007, Marks: 4]

FP=(32x4+60x5+8x10+24x4+2x P65+ 0.01 x (3 x14)] =661.26
Feature point value
=(82x4+60x5+8x%x10+24x4+2 %714 x[0.65+0.01x(3x14)]=676.24

What do you mean by software quality? Discuss facte that affect software quality. [2007,
Marks: 1 + 2]

Software Quality:

Software quality means the collective quality ok trequirement analysis that describe the
problem, the design that models the solution, tiaedhat leads to an executable program, and of the
tests that exercise the software to uncover errors.

Factors affecting software quality:

The 1ISO 9126 standard was developed in an atteamgentify the key quality attributes for
computer software. The standard identifies six dugslity attributes:

Functionality. The degree to which the software satisfies stagedls as indicated by the
following sub-attributes: suitability, accuracytenoperability, compliance, and security.

Reliability. The amount of time that the software is availdbiaise as indicated by the following
sub-attributes: maturity, fault tolerance, recobdity.

Usability. The degree to which the software is easy to usedasated by the following sub-
attributes: understandability, learnability, opeligh

Efficiency. The degree to which the software makes optimabéisgstem resources as indicated
by the following sub-attributes: time behavior,aesce behavior.

Maintainability. The ease with which repair may be made to theveo#t as indicated by the
following sub-attributes: analyzability, changedkijlstability, testability.

Portability. The ease with which the software can be transpweadone environment to another
as indicated by the following sub-attributes: adbpity, installability, conformance, replaceabjlit

21



Theories

5.1

CHAPTER 5
SOFTWARE PROJECT PLANNING: ESTIMATION

Software Project Planning
Software project planning actually encompassespt@stimation, risk analysis and management,

project scheduling and tracking, quality assuramce, configuration management. However, in the
context of this chapter, planning involvestimation— the attempt to determine how much money,
how much effort, how many resources, and how muk tt will take to build a specific software-
based system or product.

5.2

Activities of Software Project Planning
1. Determination of software scope

Software scope describes the data and control to
processed, function, performance, constraints,rfaites,
and reliability.

Estimation of the resources required to accomplishhe / \
Hardware /software tools

Reusable software
components

software development effort

Figure 5.2illustrates development resources as a pyramis Figure 5.2: Software Project Resources.
a. Human Resources
b. Reusable Software Resources

Bennatan suggests four software resource categbaeshould be considered as
planning proceeds:

I. Off-the-shelf components Existing software that can be acquired from adtipiarty or
that has been developed internally for a past profgOTS (commercial off-the-shelf)
components are purchased from a third party, aeyréor use on the current project,
and have been fully validated.

ii. Full-experience components.Existing specifications, designs, built for therremt
project. Members of the current software team hhad full experience in the
application area represented by these componenésefbre, medications required for
full-experience components will be relatively loigk:.

lii. Partial-experience componentsEXxisting specifications, designs, code, or teshda
developed for past projects that are related tostifavare to be built for the current
project but will require substantial modificatidlembers of the current software team
have only limited experience in the applicationaarepresented by these components.
Therefore, modifications required for partial-expace components have a fair degree
of risk.

iv. New components. Software components that must be built by théwsoE team
specifically for the needs of the current project.

The following guidelines should be considered by sbftware planner when reusable
components are specified as a resource:

1. If off-the-shelf components meet project requiretagrmcquire them. The cost for
acquisition and integration of off-the-shelf compats will almost always be less than
the cost to develop equivalent software. In addjticsk is relatively low.

2. If full-experience components are available, tls&giassociated with modification and
integration is generally acceptable. The projeeinpshould reflect the use of these
components.

3. If partial-experience components are availableyy e for the current project must be

22



analyzed. If extensive modification is requireddsefthe components can be properly
integrated with other elements of the softwareceea carefully — risk is high. The
cost to modify partial-experience components canetones be greater than the cost to
develop new components.

c. Environmental Resources

The environment that supports the software projeften called the software
engineering environment (SEE), incorporates harevaad software. Hardware provides a
platform that supports the tools (software) requite produce the work products that are
an outcome of good software engineering practice.

5.3 Software Project Estimation Techniques'
There are several techniques for software proganation. For example:

1. Decomposition techniques
a. Software sizing
b. Problem-based estimation
i. LOC-based estimation
ii. FP-based estimation
2. Empirical estimation models
a. LOC-oriented empirical estimation models
i. Walston-Felix model
ii. Bailey-Basil model
iii. Boehm simple model
iv. Doty model for KLOC > 9
b. FP- oriented empirical estimation models
i. Albrecht and Gaffney model
ii. Kemerer model
iii. Matson, Barnett, and Mellichamp model
c. COCOMO model
d. Software equation

5.4 Empirical Estimation Models *

An estimation model for computer software uses ewcglly derived formulas to predict effort as
a function of LOC or FP. Values for LOC or FP astiraated using the approach described in
Sections 5.6.2 and 5.6.3. But instead of usingt#iibes described in those sections, the resultant
values for LOC or FP are plugged into the estinmatiwdel.

The structure of estimation models

A typical estimation model is derived using regi@ssanalysis on data collected from past
software projects. The overall structure of sucliel® takes the form:

E=A+Bx@)°
whereA, B, andC are empirically derived constant,is effort in person-months, am¥ is the
estimation variable (either LOC or FP).

In addition to the relationship noted in the abegeation, the majority of estimation models have
some form of project adjustment component that keisaB to be adjusted by other project
characteristics (e.g., problem complexity, stafpemence, development environment). Among the
many LOC-oriented estimation models proposed iritheature are:

E = 5.2 x (KLOC}*! Walston-Felix model
E=55+0.73 x (KLOC)*® Bailey-Basili model
E = 3.2 x (KLOC)® Boehm simple model

* Not needed for the in-course or final exams. $kymu wish. These two topics are provided onlyjhp youbetterunderstand
the COCOMO model.

23



E = 5.288 x (KLOCY** Doty model for KLOC > 9
FP-oriented models have also been proposed. Thelselé:

E =13.39 + 0.0545 FP Albrecht and Gaffney model

E = 60.62 x 7.728 x 1OFP? Kemerer model

E =585.7 + 15.12 FP Matson, Barnett, and Medlinp model
5.5 The COCOMO (Constructive Cost Model) Model

In his classic book on “software engineering ecoiesiiBarry Boehm introduced a hierarchy of
software estimation models bearing the name COCOB&hm’s hierarchy of models takes the
following form:

Model 1. The Basic COCOMO Model — Computes software development effort (and cosg as
function of program size expressed in estimategsliof code (LOC).

Model 2: The Intermediate COCOMO Model — Computes software development effort (and
cost) as a function of program size and a set sf ddvers that include subjectiVe
assessments of product, hardware, personnel, apgtpattributes.

Model 3: The AdvancedCOCOMO Model — Incorporates all characteristics of the intermeliat
version with an assessment of the cost driver'sachpneach step (analysis, design
etc.) of the software engineering process.

The COCOMO models are defined for three classesaftfware projects. Using Boehm'’s
terminology, these are:

1. Organic mode —Relatively small, simple software projects in wharhall teams with good
application experience work to a set of less thgid requirements (e.g., a thermal analysis
program developed for a heat transfer group).

2. Semi-detached mode -An intermediate (in size and complexity) softwareject in which
teams with mixed experience levels must meet aahiigid and less than rigid requirements
(e.g., a transaction processing system with fiegpirements for terminal hardware and
database software).

3. Embedded mode -A software project that must be developed withgetof tight hardware,
software and operational constraints (e.qg., fligritrol (auto-pilot) software for aircraft).

5.6 The Basic COCOMO Model Equation
The basic COCOMO model equation takes the form:
E = a, KLOC?»
D =c,E%
N=E/D
Here,E = effort applied (in person-months)
D = development time (in months)
N = number of people employed
KLOC = estimated number of lines of code for the gab{expressed in thousands)

ay, by, Gy, dy = constants whose values can be found from ti@xfimg table:

ProjectClass a, by, ¢ dg
Organic 24 105 25 0.38
Semi-organic 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

13 Subjective: See footnote 11 for the meaning.
24



Questions

5.1

5.2

5.3

Describe the function-point based estimation2D03, Marks: 1 or 2)]

In FP-based estimation, the project planner eséimm@puts, outputs, inquiries, files, external
interfaces and each of the complexity weightingdes; and computes the complexity adjustment
factor. Finally, the estimated number of FP is\dstiusing the following formula:

FP = count total x [0.65 + 0.01%2, F; ]

Briefly describe the COCOMO model of software stimation. [2003, 2004, 2005, Marks: 4;
2007, Marks: 3]

See Theory 5.5

What are the project resources? Describe COCOM@nodel Il. Use COCOMO model Il to
estimate the effort required to build software fora simple ATM that produces 12 screens, 20
reports and will require approximately 88 software components. Assume average complexity
and average development environment maturity. Usepgplication composition model with object
points. [2005, Marks: 6]

The project resources are:

1. Human Resources.
2. Reusable Software Resources.
3. Environmental Resources.

[COCOMO Model Il is out of scope of our syllabuswéwer, the solution to the mathematical
problem is provided belov:

New Object Point, NOP =12 x 2 + 20 x 5 + 88 = 212
Productivity Rate, PROD = 13
[0 Estimated Effort = NOP / PROD =212/ 13 =16.31

25



Theories

6.1

CHAPTER 6
RISK ANALYSIS & MANAGEMENT

Conceptual Definition of Risk

First, risk concernguture happenings

Secondrisk involveschange such as in changes of mind, opinion, actionplaces.
Third, risk involveschoice and thauncertaintythat choice itself entails.

Risk Analysis and Management
Risk analysis and management are a series of gtapfelp a software team to understand and

manageuncertainty

Many problems can plague a software project. A issk potential problem — it might happen, it

might not. But, regardless of the outcome, it'®ally good idea to identify it, assess its probabdf
occurrence, estimate its impact, and establismérgency plan should the problem actually occur.

6.2

6.3

6.4

Risk (Management) Strategies
4. Reactive Risk Strategy

According to this strategy, the action that shduédaken is decided only when a problem
actually occurs.

. Proactive Risk Strategy

A proactive strategy begins long before technicallwis initiated. Potential risks are
identified, their probability and impact are asselsand they are ranked by importance. Then,
the software team establishes a plan for managgkg r

The primary objective is to avoid risk, but becanse all risks can be avoided, the team
works to develop a contingency plan that will eeabko respond in a controlled and effective
manner.

Characteristics of Risk
1. Uncertainty — the risk may or may not happen:; that is, theeen@100% probableisks’*

2. Loss— if the risk becomes a reality, unwanted consegee or losses will occur.

Categories of Risk
Categories of Risks according to the level of unceinty and the degree of loss associated

with them

1. Project Risks

Threatens The project plan.
Loss associatedt is likely that project schedule will slip atidat costs will increase.
Identifies. Potential budgetary, schedule, personnel (staffamd organization), resource,

customer, and requirements problems and their itnpac a software project. Project
complexity, size, and the degree of structural tagdy are also defined as project risk

factors.

. Technical Risks

Threatens The quality and timeliness of the software tgpbeduced.
Loss associatedProject implementation may become difficult opimssible.

14 A risk that is 100% probable iscanstrainton the software project.

26



Identifies: Potential design, implementation, interface, fugation, and maintenance
problems. In addition, specification ambiguity, Heical uncertainty, technical obsolescence,
and 'leading-edgetechnology are also risk factors.

Reason of occurrenceTechnical risks occur because the problem isdraia@ solve than we
thought it would be.

Business Risks

Threatens The viability*® of the software to be built.

Loss associatedften jeopardiz the project or the product.
Candidates

(1) Market Risk — building an excellent product or system thabne really wants.

(2) Strategic Risk— building a product that no longer fits into theerall business strategy.

(3) Building a product that the sales force doesn'ewstdnd how to sell.

(4) Management Risk— losing the support of senior management duedeaage in focus
or a change in people.

(5) Budget Risks— losing budgetary or personnel commitment.

General categorization of risks

1. Known Risks
Known risksare those that can be uncovered after carefubatrah of the project plan,
the business and technical environment in whichpiggect is being developed, and other
reliable information sources (e.g., unrealisticia®ly date, lack of documented requirements
or software scope, poor development environment).
2. Predictable Risks
Predictable risksare extrapolated from past project experience,(stgff turnover, poor
communication with the customer, dilution of stefifort as ongoing maintenance requests are
serviced).
6.5 Risk Identification

Risk identification is a systematic attempt to sfyethreats to the project plan.

By identifying known and predictable risks, the jpmd manager takes a first step towards
avoiding them when possible and controlling thenemhecessary.

Identifying Risks / Risk Item Checklist

>
>

A risk item checklist can be created which can $eduor risk identification.
Product size— risks associated with the overall size of thigvgare to be built or modified.

Business impact— risks associated with constraints imposed by agament or the
marketplace.

Customer characteristics— risks associated with the sophistication of ¢hstomer and the
developer's ability to communicate with the custome timely manner.

Process definition— risks associated with the degree to which tHigveoe process has been
defined and is followed by the development orgaiora

Development environment— risks associated with the availability and quadit the tools to
be used to build the product.

Technology to be built— risks associated with the complexity of the sgsto be built and
the 'newnessof the technology that is packaged by the system.

Staff size and experience— risks associated with the overall technical praject experience
of the software engineers who will do the work.

5 Viability: Practicality; Usefulness.
16 Jeopardize: Put at risk; Pose a threat to; Present a danger to

27



Questions

6.1 Why is risk important in Software Engineering?What is the difference betweeneactiveand
proactiverisk strategies? [2006, Marks: 4]

Software is a difficult undertaking Lots of things can go wrong, and in fact, martgofdo. It's
for this reason that being prepared — understanti@gisks and taking proactive measures to avoid
or manage them — is a key element of good softywasgct management.

Differences between reactive and proactive rislkagtgies:

Reactive Strategy Proactive Strategy

1. Action that should be taken is decided o 1. Begins long before technical work is
when a problenactually occurs. initiated. Potential risks are identified, their
probability and impact are assessed, and they
are ranked by importance. Then, the software
team establishes a plan for managing risk.

2. When reactive strategy fails, “cris 2. Plan is established before a risk becomes a
management” takes over and the proj reality. So, measures are taken beforehand so

goes in real jeopardy. that risk management does not fail.

6.2 What type of risks are we likely to encounter ithe software is built? [2004. Marks: 5]

See Theory 6.4
6.3 What is risk projection? Explain the steps invtved in risk projection. [2006. Marks: 4]

Out of our syllabus.
6.4 Write down the characteristics of risks. [2007Marks: 2]

See Theory 6.3
6.5 What is risk identification? Explain the methodto create a risk item checklist for risk

identification. [2007. Marks: 1 + 2]
See Theory 6.5
6.6 Describe the difference between risk componenasid risk drivers. [2007. Marks: 2]

The difference between risk components and riskedsi is that risk driversaffect risk
components. There are four risk components — padnce, cost, support and schedule risks. The
impact of each risk driver on the risk componentigded into one of four impact categories —
negligible, marginal, critical or catastrophic.

" Undertaking: Any piece of work that is undertaken or attempted.
28



CHAPTER 12
ANALYSIS MODELING

Theories

12.1 Analysis Modeling

Analysis modeling uses a combination of text araydimmatic forms to depict requirements for
data, function, and behavior in a way that is reddy easy to understand, and more important,

straightforward to review for correctness, compiets, and consistency.
12.2 Objectives of the Analysis Model
The analysis model must achieve three primary tilvgEs

1. To describe what the customer requires,
2. To establish a basis for the creation of a softwiasgn, and
3. To define a set of requirements that can be vadlahce the software is built.

12.3 The Structure / Elements of the Analysis Model

To accomplish the objectives of the analys
model, the analysis model derived durir
structured analysis takes the form illustrated

figure 12.3.
At the core of the model lies thdata ety S
dictionary — a repository that contains reltionship dogrem

dogram

descriptions of all data objects consumed
produced by the software.
Data dictionary

Three different diagrams surround the cor¢

The entity relation diagram(ERD) depicts
relationships between data objects. T
attributes of each data object noted in the EFf
can be described using alata object
description

Stoteransition
dagram

Thedata flow diagram(DFD) serves two
purposes:

Control specificafie™

1. To provide an indication of how data are Figure 12.3: The Structure of the analysis model.
transformed as they move through the system.

2. To depict the functions (and subfunctions) thatsfarm the data flow.

A description of each function presented in the DiEDcontained in grocess specification

(PSPEC).
The state transition diagram(STD) indicates how the system behaves as a coeseq of

external events. To accomplish this, the STD regmissthe various modes of behavior (called states)
of the system and the manner in which transitiors@ade from state to state. Additional information

about the control aspects of the software is coathin thecontrol specificatio(CSPEC).
12.4 Data Flow Diagram (DFD) / Data Flow Graph / BubbleChart

A data flow diagrams a graphical representation that depicts inféionaflow and the transforms

that are applied as data move from input to output.
Levels of Abstraction of DFD

The data flow diagram may be used to represensiisyor software at any level of abstraction.
In fact, DFDs may be partitioned into levels thgpinesent increasing information flow and functional

detail.

29



12.5

12.6

A level 0 DFD, also called a 3
fundamental system moder a Level0DFD 4
context modelrepresents the entire
software element as a single
bubble with input and output data
indicated by incoming and
outgoing arrows, respectively.

'

Additional processes (bubbles;®V®'1PFD  *

and information flow paths are
represented as the level O DFD is
partitioned to reveal more detalil.

For example, déevel 1 DFD might

contain five or six bubbles withLevel 2 DFD
inter-connecting arrows. Each of

the processes represented at level 1

is a subfunction of the overall

system depicted in the context model.

As was noted earlier, each of the bubbles may firgeckor layered to depict more detaitigure
12.4 illustrates this concept.

Figure 12.4:Levels of DFD.

Representation of a DFD
A computer-based system is represented as an iafammtransform as shown figure 12.5.

A rectangleis used to
represent an externa | External External
entity; that is, a system| "% entity
element (e.g., hardware,
person, another progran
etc.) or another system the
produces information for
transformation by the
software  or  receives
information produced by
the software. Bdternal

entity

Intermediate

Datka store
output

Data store
input

Output date

Input data

A circle (sometimes
called abubblg represents
a process or transform ths

External
Bﬂ-'i.'y

is applied to data (or Figure 12.5: Information Flow Model.
control) and changes it in
some way.

An arrow represents one or more data items (data objellisarrows on a data flow diagram
should be labeled.

Thedouble linerepresents a data store — stored informationishaged by the software.
Creating a Data Flow Model
A few simple guidelines can aid immeasurably dudegvation of a data flow diagram:
1. The level O data flow diagram should depict thévsafe/system as a single bubble.
2. Primary input and output should be carefully noted.

3. Refinement should begin by isolating candidate @sses, data objects, and stores to be

represented at the next level.
4. All arrows and bubbles should be labeled with megfitl names.

30



12.7

5. Information flow continuity must be maintained frdevel to level.
6. One bubbleat a time should be refined.

There is a natural tendency to overcomplicate #ta low diagram. This occurs when the analyst
attempts to show too much detail too early or regmés procedural aspects of the software in lieu of
information flow.

Example of Level O, Level 1 and Level 2 DFDs
Software Product Description:
SafeHome software enables

the homeowner to configure th SAFEHOME oF -
security system when it s [j . y
installed, monitors all sensor: mn oway
i o slay x test ass

connected to the security syster alarm st b@
and interacts with the :*r:a:k bypassd .m.m wde chime
homeowner through a keypa © o reacy - B
and function keys contained it
the SafeHome control pane ormed  power
shown infigure 12.7. O O [ P I

During installation, the
SafeHome control panel is use

to program and configure the
system. Each sensor is assigned a
number and type, a master password is programmea@rfoing and disarming the system, and
telephone number(s) are input for dialing whenresseevent occurs.

Figure 12.7:SafeHome Control Panel.

When a sensor event is recognized, the softwaiekas/an audible alarm attached to the system.
After a delay time that is specified by the homeewduring system configuration activities, the
software dials a telephone number of a monitorienyise, provides information about the location,
reporting the nature of the event that has beeectert. The telephone number will be redialed every
20 seconds until telephone connection is obtained.

All interaction with SafeHome is managed by a us&raction subsystem that reads input
provided through the keypad and function keys, ldigpprompting messages on the LCD display,
and displays system status information on the L@&pldy. Keyboard interaction takes the following
form...

Level O DFD for SafeHome

Cantral

Usar commands Display panal
end data infarmatian display
SafeHomea Alarm

softwara

Talephana
Sensar I:»E Talaphane
shatus number tonas line

31



Level 1 DFD

Cantrol
panal

Lsar commands
and data

Configura
systam

Configuration

data

Canfigura
mouast

Intaract
with
usar

Canfiguration infarmatian

Configuration

Activate/
data

daactivate
systam

Password

Procass Display Control
password Valid 1D msg. mestages Maol
and status gty

Configuration infarmation

data

Sansor
: : Alarm
infarmation
Manitar Alarm typs
Sansar SANS0rS Tolich
e Talephone g‘:!’ S
ins

number tones

Level 2 DFDthat refines the monitor sensors process

Sensor
intarmation

Configuration infarmation Sunir 1D GZT:::E e
Ype, signal
location

Configuration

data Alarm
Assass data
against
satu
F Telephone

numbar

Sansar D,
fype

Raad
SErsors

A::ur

status

Talephona
nurnbar tones

12.8 Data Dictionary

The data dictionary is an organized listing ofddta elements that are pertinent to the system,
with precise, rigorous definitions so that both rusedd system analyst will have a common
understanding of inputs, outputs, components eéstand [even] intermediate calculations.

Although the format of dictionaries varies from o tool, most contain the following
information:

32



* Name— the primary name of the data or control itene, dlata store or an external entity.
* Alias — other names used for the first entry.

*  Where used / how used— a listing of the processes that use the datawirol item and how
it is used (e.g., input to the process, output ftbenprocess, as a store, as an external entity.

» Content description— a notation for representing content.

« Supplementary information — other information about data types, preset \&lifeknown),
restrictions or limitations, and so forth.

Questions

12.1 What are the objectives of analysis model? Brieflglescribe the elements of analysis model.
[In-course 2, 2008. Marks: 5]

See Theories 12.2 and 12.3.

12.2 You have been asked to build a network-based courseegistration system for your
university. Develop an entity-relationship diagramthat describes data objects, relationships and
attributes. Also design the data flow diagram of tle system. [2003. Marks: 7]

Student

Figure: Entity-Relationship Diagram for Course Registratiostggn.

Student Info

Course Display Info '
Registration Pay V?/'.S%Iay
System indow

Course Info

Figure: Level 0 DFD for Course Registration System.

33



CHAPTER 13
DESIGN CONCEPTS & PRINCIPLES

Theories

13.1 Design
Design is a meaningful engineering representati@omething that is to be built.

In the software engineering contexdesign focuses onfour major areas of concern: data,
architecture, interfaces and components.

13.2 Translating the Analysis Model into a Design Model

relationship
diagram

Cata flow
ciagram

\\\ Component-
\ level design
1
Intarfaca
design

Architectura

Dictienary

State-transition design
diagram
~
L e Data
() R .
specification & closign
Ihe analysis model Ihe design model

Figure 13.2: Translating the Analysis Model into a Design Model.

Each of the elements of the analysis model providEsmation that is necessary to create the
four design models required for a complete spetifinaof design. The flow of information during
software design is illustrated figure 13.2.

The data designtransforms the information domain model creatednduanalysis into the data
structures that will be required to implement tbéware. The data objects and relationships defined
in the entity relationship diagram and the detadath content depicted in the data dictionary grevi
the basis for the data design activity.

The architectural designdefines the relationship between major structutaments of the
software, the design patterristhat can be used to achieve the requirementshtinag been defined for
the system, and the constraints that affect the wawhich architectural design patterns can be
applied. The architectural design representatiothe-framework of a computer-based system — can
be derived from the system specification, the ammlgsodel, and the interaction of subsystems
defined within the analysis model.

The interface desigrdescribes how the software communicates withielfjtsvith systems that
interoperate with it, and with humans who use it.iAterface implies a flow of information (e.g., @at
and/or control) and a specific type of behavior. réfare, data and control flow diagrams provide
much of the information required for interface desi

The component-level desigttansforms structural elements of the softwareénigecture into a
procedural description of software components.rmttion obtained from the PSPEC, CSPEC, and
STD serve as the basis for component design.

34



13.3 Characteristics of a Good Design / Goal of the Dagi Process

1. The design must implement all of the explicit regmients contained in the analysis model,
and it must accommodate all of the implicit reqonemts desired by the customer.

2. The design must be a readable, understandable fguitteose who generate code and for those
who test and subsequently support the software.

3. The design should provide a complete picture ofsthftware, addressing the data, functional,
and behavioral domains from an implementation peaisye.

13.4 (Technical) Criteria for Good Design / How the Goa of the Design Process can be Achieved
1. A design should exhibit an architectural structinas
(1) has been created using recognizable design patterns
(2) is composed of components that exhibit good dedhigmacteristics, and

(3) can be implemented in an evolutionary fashion,ehgrfacilitating implementation and
testing.

2. A design should benodular, that is, the software should be logically pastied into elements
that perform specific functions and subfunctions.

3. A design should contain distinct representations data, architecture, interfaces, and
components (modules).

4. A design should lead to data structures that apeoppiate for the objects to be implemented
and are drawn from recognizable data patterns.

5. A design should lead to components that exhibiejpahdent functional characteristics.

6. A design should lead to interfaces that reducectimplexity of connections between modules
and with the external environment.

7. A design should be derived using a repeatable rdetiinat is driven by information obtained
during software requirements analysis.

13.5 Basic Design Principles

> The design process should not suffer from ttinnel vision®. A good designer should
consider alternative approaches, judging each basetie requirements of the problem, the
resources available to do the job, and the designepts.

» The design should be traceable to the analysis mdddBecause a single element of the
design model often traces to multiple requiremahnis,necessary to have a means for tracking
how requirements have been satisfied by the desapel.

» The design should not reinvent the wheelSystems are constructed using a set of design
patterns, many of which have likely been encoundtéefore. These patterns should always be
chosen as an alternative to reinvention. Time @tsand resources are limited! Design time
should be invested in representing truly new idmad integrating those patterns that already
exist.

» The design should “minimize the intellectual distane” between the software and the
problem as it exists in the real world.That is, the structure of the software design khou
(whenever possible) mintitthe structure of the problem domain.

» The design should exhibit uniformity and integratian. A design is uniform if it appears that
oneperson developed the entire thing. Rules of syl format should be defined for a design
team before design work begins. A design is integra care is taken in defining interfaces
between design components.

8 Tunnel Vision: Visual defect/disorder.
¥ Mimic: Imitate; Appear alike, as in behavior or appeaganc
35



» The design should be structured to accommodathange

» The design should be structured to degrade gentlgven when abnormal data, events, or
operating conditions are encountered.Well-designed software should nevdsomb. It
should be designed to accommodate unusual circagega and if it must terminate
processing, do so in a gracéfuhanner.

» Design is not coding, coding is not desigrEven when detailed procedural designs are
created for program components, the level of atistra of the design model is higher than
source code. The only design decisions made atctding level address the small
implementation details that enable the procedwrsigh to be coded.

» The design should be assessed for quality as itising created, not after the fact.

» The design should be reviewed to minimize conceptugsemantic) errors. There is
sometimes a tendency to focus on minor issues Wieedesign is reviewed, missing the forest
for the trees. A design team should ensure thabmapnceptual elements of the design
(omissions, ambiguity, inconsistency etc.) havenbaddressed before worrying about the
syntax of the design model.

13.6 Effective Modular Design: Functional Independence

Functional independence is achieved by developiadutes with $ingle-mindetf* function and
an 'aversiori?® to excessive interaction with other modules. $tateother way, we want to design
software so that each module addresses a speabiitirection of requirements and has a simple
interface when viewed from other parts of the paogsstructure.

13.7 Cohesion and Coupling

Functional independence is measured using twotqtiaé criteria:cohesionandcoupling

A cohesivemodule performs a single task within a softwa@pdure, requiring little interaction
with procedures being performed in other parts pfagram. Stated simply, a cohesive module should
(ideally) do justonething.

Cohesion may be represented aspettruti®®, We always strive fonigh cohesion, although the
mid-range of the spectrum is often acceptable.

Couplingis a measure of interconnection among modulessoftavare structure. Coupling
depends on the interface complexity between modthegpoint at which entry or reference is made
to a module, and what data pass across the ingerfac

In software design, we strive flawestpossible coupling. Simple connectivity among medul
results in software that is easier to understamdess prone to aipple effect caused when errors
occur at one location and propagate through armsyste

Questions
13.1 Briefly explain how software requirement analysis $ linked with software engineering and
software design. [2006. Marks: 4]
See Theory 13.2.
13.2 Describe the principles of software design. [In-casge 2, 2008. Marks: 5]

See Theory 13.5.

2 Graceful: Characterized by beauty of movement, style, famexecution.

2L A module is single-mindetif it can be described with a simple sentence ubjsct, predicate, object.
2 pversion: A feeling of extreme dislike.

% gpectrum: A broad range of related objects or values oritieslor ideas or activities.

36



CHAPTER 16
SOFTWARE TESTING TECHNIQUES

Theories

16.1

16.2

16.3

16.4

Introduction

Once source code has been generated, softwarebeussted to uncover (and correct) as many
errors as possible before delivery to your custoeur goal is to design a series of test cases tha
have a high likelihood of finding errors — but howRat’'s where software testing techniques enter
the picture. These techniques provide systematidagae for designing tests that (1) exercise the
internal logic of software components, and (2) eserthe input and output domains of the program
to uncover errors in program function, behavior padormance.

Testing Objectives

In an excellent book on software testing, Glen Mystates a number of rules that can serve well
as testing objectives:

1. Testing is a process of executing a program wighitkent of finding an error.
2. A good test case is one that has a high probabifynding an as-yet-undiscovered error.
3. A successful test is one that uncovers an as-ydiscovered error.

In a word, our objective is to design tests thatesypatically uncover different classes of errors
and to do so with a minimum amount of time andreffo

Testing Benefits
1. If testing is conducted successfully, it will uneo\errors in the software.

2. Testing demonstrates that software functions apigebe working according to specification,
that behavioral and performance requirements apgpdave been met.

3. Data collected as testing is conducted provide @gadication of software reliability and
some indication of software quality as a whole.

Testing Principles

Before applying methods to design effective tesesaa software engineer must understand the
basic principles that guide software testing. Davggests a set of testing principles that hava bee
adapted for use in this book:

» All tests should be traceable to customer requirenmds. As we have seen, the objective of
software testing is to uncover errors. It followsatt the most severe defects (from the
customer’s point of view) are those that causeptihgram to fail to meet its requirements.

» Tests should be planned long before testing beginBest planning (Chapter 18) can begin as
soon as the requirements model is complete. Ddtdidinition of test cases can begin as soon
as the design model has been solidified. Therefaltetests can be planned and designed
before any code has been generated.

» The Pareto principle applies to software testingStated simply, the Pareto principle implies
that 80 percent of all errors uncovered duringirigswvill likely be traceable to 20 percent of
all program components. The problem, of cours# isolate these suspect components and to
thoroughly test them.

» Testing should begin “in the small” and progress tward testing “in the large.” The first
tests planned and executed generally focus onithdil components. As testing progresses,
focus shifts in an attempt to find errors in ine#gd clusters of components and ultimately in
the entire system (Chapter 18).

» Exhaustive testing is not possibleThe number of path permutations for even a modirat
sized program is exceptionally large. For this oeasit is impossible to execute every

37



combination of paths during testing. It is possilblewever, to adequately cover program logic
and to ensure that all conditions in the compomherd} design have been exercised.

» To be most effective, testing should be conducted lan independent third party. By most
effective, we mean testing that has the highesbaliity of finding errors (the primary
objective of testing). For reasons that have be#rduced earlier in this chapter and are
considered in more detail in Chapter 18, the saftwengineer who created the system is not
the best person to conduct all tests for the soéwa

16.5 Testability

Software testability is simply how easily [a comgruprogram] can be tested. The checklist that
follows provides a set of characteristics that leatéstable software.

Operability. "The better it works, the more efficiently it cha tested.”

» The system has few bugs (bugs add analysis andirepoverhead to the test process).
» No bugs block the execution of tests.
» The product evolves in functional stages (allowsutianeous development and testing).

Observability. "What you see is what you test.”

Distinct output is generated for each input.

System states and variables are visible or quercinling execution.

Past system states and variables are visible oratpe (e.g., transaction logs).
All factors affecting the output are visible.

Incorrect output is easily identified.

Internal errors are automatically detected throsgjhtesting mechanisms.
Internal errors are automatically reported.

Source code is accessible.

VVVVVVVY

Controllability. "The better we can control the software, the nibeetesting can be automated
and optimized."

» All possible outputs can be generated through smon#ination of input.

» All code is executable through some combinatiompfit.

» Software and hardware states and variables caartieoied directly by the test engineer.
» Input and output formats are consistent and stradtu

» Tests can be conveniently specified, automatedreprdduced.

Decomposability."By controlling the scope of testing, we can mqueckly isolate problems and
perform smarter retesting."”

» The software system is built from independent meslul
» Software modules can be tested independently.

Simplicity. "The less there is to test, the more quickly we test it."

» Functional simplicity (e.qg., the feature set is thi@imum necessary to meet requirements).

» Structural simplicity (e.g., architecture is modudad to limit the propagation of faults).

» Code simplicity (e.g., a coding standard is adopfed ease of inspection and
maintenance).

Stability. "The fewer the changes, the fewer the disruptiorissting.”

» Changes to the software are infrequent.

» Changes to the software are controlled.

» Changes to the software do not invalidate exidists.
» The software recovers well from failures.

Understandability. "The more information we have, the smarter we tegk."

» The design is well understood.
» Dependencies between internal, external, and sltaragonents are well understood.
» Changes to the design are communicated.

38



16.6

16.7

16.8

» Technical documentation is instantly accessible.
» Technical documentation is well organized.

» Technical documentation is specific and detailed.
> Technical documentation is accurate.

White-Box / Glass-Box Testing

White-box testingsometimes calledlass-box testingis a test case design method that uses the
control structure of the procedural design to detiest cases. Using white-box testing methods, the
software engineer can derive test cases that

(1) guarantee that all independent paths withirodute have been exercised at least once,
(2) exercise all logical decisions on their trud &alse sides,

(3) execute all loops at their boundaries and witheir operational bounds, and

(4) exercise internal data structures to ensuiie viagdity.

Black-Box Testing

Black-box testingalso calledbehavioral testingfocuses on the functional requirements of the
software. That is, black-box testing enables tHensoe engineer to derive sets of input conditions
that will fully exercise all functional requiremenfior a program.

Error Categories That Can be Found Using Black-BoxX esting

Black-box testing attempts to find errors in thédwing categories:

(1) incorrect or missing functions,

(2) interface errors,

(3) errors in data structures or external databasess,

(4) behavior or performance errors, and

(5) initialization and termination errors.

Test Case Design Criteria for Black-Box Testing

By applying black-box techniques, we derive a $e¢est cases that satisfy the following criteria:

(1) test cases that reduce, by a count that idegré@an one, the number of additional test cases
that must be designed to achieve reasonable testithg

(2) test cases that tell us something about theepiee or absence of classes of errors, rather than
an error associated only with the specific tes$taatd.

Cyclomatic Complexity

Cyclomatic complexitys a software metric that provides a quantitativeasure of the logical
complexity of a program. When used in the conteixthe basis path testing method, the value
computed for cyclomatic complexity defines the nembf independent paths in the basis set of a
program and provides us with an upper bound fornmmber of tests that must be conducted to
ensure that all statements have been executedsatoiace.

Independent Path

An independent paths any path through the program that introduceteast one new set of
processing statements or a new condition. Wherdsiatterms of a flow graph, an independent path
must move along at least one edge that has nottlkmesrsed before the path is defined.

39



16.9 Converting a Code Segment into a Flow Graph
PROCEDURE average;

*  Thie procedure computes the average of 100 or fewer

numbere that lie between bounding values: it aleo computes the
sum and the total number valid.

INTERFACE RETURNS average, total.input, total.valid;
INTERFACE ACCEPTS value, minimum, maximumn;

TYPE value[1:100] IS SCALAR ARRAY:
TYPE average, totalinput, total.valid;
minimum, maximum, sum 18 SCALAR;

TYPE i 18 INTEGER:
Si= 1

3 totalinput = total.valid = 0; 2 o
sum = 0: /

DO WHILE value[i] <> -999 AND total.input < 100 (3
4. increment total.input by 1:
IF value[i] > = minimum AND value[i] < = maximum 8
&=  THEN increment total.valid by 1; @
7 sum = & sum + value[i]

& {ENDIFELQE =¥ 0 o
4

increment § by 1;

8 ENDDO @ °

IF total.valid > O 10

in N THEN average = sum / total.valid: o
—ELSE average = -999;
12 ENDIF
END average o

Case where there is a©R in code segment rather than aAND

}

Predicate

nede \

IFa ORb
then prDCEdurE X

else procedure y
ENDIF

Note: Each node that contains a condition is callguelicate nodeand is characterized by two or
more edges emanating from it.

Questions

16.1 What is the principle of software testing? Describéestability. [2003, 2004. Marks: 5]

The principle of software testing is to use techew) that provide systematic guidance for
designing tests that (1) exercise the internalclajisoftware components, and (2) exercise thetinpu
and output domains of the program to uncover efropsogram function, behavior and performance.

See Theory 16.5 for Testability.

16.2 Discuss the differences between verification and lrdation. [2005, 2006. Marks: 2]
Explain why validation is a particularly difficult process. [2005. Marks: 3]

[Out of our syllabus. But the answer to the firgegtion is provided below.]

40



Differences between verification and validation:

Verificationrefers to the set of activities that ensure tbétiare correctly implements a specific
function.Validationrefers to a different set of activities that emsilvat the software that has been
built is traceable to customer requirements. Bostates this another way:

Verificatiort "Are we building the product right?"
Validation "Are we building the right product?”

16.3 What is White box testing? Differentiate between wite box testing and black box testing.
[2004, 2005, 2006, 2007. Marks: 5]

White-box testing:

White-box testings a test case design method that uses the caitradture of the procedural
design to derive test cases. Using white-box tgstnethods, the software engineer can derive test
cases that

(1) guarantee that all independent paths withirodute have been exercised at least once,

(2) exercise all logical decisions on their trud &alse sides,

(3) execute all loops at their boundaries and witheir operational bounds, and

(4) exercise internal data structures to ensuiie viagdity.

Difference between white-box and black-box testing:

White-Box Testing Black-Box Testing

White-box testings a test case design meth Black-box testingfocuses on the functional

that uses the control structure of the proced requirements of the software. That is, black-box

design to derive test cases. testing enables the software engineer to derive
sets of input conditions that will fully exercise
all functional requirements for a program.

White-box testing is performed early in thBlack-Box testing tends to be applied during

testing process. later stages of testing.
White-box testing of software is predicated Black-Box testing alludes to tests that are
close examination of procedural detail. conducted at the software interface.

16.4 Describe basis path testing method. [2003. Marks]5
The following steps can be applied to derive th&dset:

1. Using the design or code as a foundation, draw@sgponding flow graph.
2. Determine the cyclomatic complexity of the resultiéow graph.

3. Determine a basis set of linearly independent paths

4. Prepare test cases that will force execution o gath in the basis set.

[Now describe each point... How? Well, try yourse]f...!

16.5 For the following code segment,
i) Draw flow graph.
i) Calculate cyclomatic complexity of the flow graph.
iii) Calculate cyclomatic complexity using graph matrix[2004, 2005, 2006, 2007. Marks: 6]

for (i=0; i <length — 1 and ch != EOF; i++) {
str[i] = ¢;
¢ = getch();

if c=="\n"|| c=="\r)
str[i] = ¢;

i) @b ST Yoitd F40e AR — 5. (FEHEF while—a IO A Theory 16.9-99 T F(H TS
T 2. @ SRYT (@0RE S FAN| OF A (F@2 cyclomatic complexitydFa ST |

41



Way 1

11 = n; 2 3

DO WHILE i <« length - 1 AND ch l= EOF
Cdtt
4 = =tr[i] = c;

o o= getch ()

7
IF ¢ == '\n' OR <o == ST
8 THEN strl[il = <
9 ENDIF

1 2 3

for (i = 0:; i < length - 1 and ch != EOF: i+4) {
4 o strl[i] = o
1 ¢ = getch():
5
6 7
if (¢ == "\n’ || ¢ ==
8 str[i] = c;

) 1

9

Way 3

2
for (1 = 0; 1 < length — 1 and ch = EOF; i+4) |
3 J'strHJ =
1,2 = getch(

YO

1
4
5 6
if (o == *\n' || c == "\r'){
7 strli] = c;
8

TR QT Way 2 (FRITS) @R el ifF et Teq etk &« |
i) Cyclomatic Complexity:

1. Using number of regions: 5.

2. UsingV(G)=E-N+2=12-9+2=5.

3. UsingV(G) =P +1=4+1=5.[The predicate nodes are 2,8)®67]
iii) Cyclomatic Complexity using graph matrix:

Connected to Node

1 2 3 4 5 6 7 8 9 Connections
1

Node

1

=

PRRRPRPRPRPR
L T 1 VO A T 1

ORRPROORRO

©CoOoO~NOOA~WNEPER
=
PNONRPRPNDNPRP
I

4+1=5

42



CHAPTER
MISCELLANEOUS QUESTIONS

Questions

1

14.1

You are a software engineer of a big software delopment company that has developers
who work remotely around the world. You have to any/ze and develop a software system for
the coordination of distributed development. Show dtabase structures, different modules, flow
chart and team structure to develop the software.2004, 2006, 2007. Marks: 10]

You are a systems analyst of a multinational congmy that sells IT products and services
with warranty of different time durations on differ ent product and services. You have to
research and develop a CRM (Customer Relationship Bhagement) software for the company
so that the company can properly track and give imradiate warranty services to the clients.
Design the database structure, different modules|dwcharts and a team structure to implement
the system. Explain every decision you have made g this process. What software
engineering model will you choose and why? [20030@5. Marks: 10]

What is transform flow? What are the required stepsto map transform flow for the software
design? [2003, 2004. Marks: 5]

See chapter 14...

43



