NP-COMPLETENESS

Concepts

11 Introduction

Almost all the algorithms we have studied thusHave been polynomial-time algorithms: on
inputs of sizen, their worst-case running time @&n") for some constark However, not all problems
can be solved in polynomial time. For example, eéhame problems, such as Turing’s famous “Halting
Problem,” that cannot be solved by any computermaster how much time is provided. There are
also problems that can be solved, but not in tdge) for any constank. Generally, we think of
problems that are solvable by polynomial-time athons as being tractable, or easy, and problems
that require superpolynomial time as being intraletaor hard.

1.2 Classes of Problems According to Runtime
P (Polynomial)

The class P consists of those problems that avalslel in polynomial time. More specifically,
they are problems that can be solved in tDge") for some constari, wheren is the size of the input
to the problem. Most of the problems examined &vimus chapters are in P.

NP (Nondeter ministic Polynomial)

The class NP consists of those problems that aeffable” in polynomial time. What we mean
here is that if we were somehow given a “certigadf a solution, then we could verify that the
certificate is correct in time polynomial in theeiof the input to the problem.

Any problem in P is also in NP, since if a problenn P then we can solve it in polynomial time
without even being given a certificate. We candaithat F= NP.

NPC (NP-Complete)
A problem B isNP-completaf:

1) Be NP
2) A<, B forall Ae NP

If B satisfies only property 2, we say that BNB-hard.
No polynomial time algorithm has been discoveredafo NP-Complete problem.

Again, no one has ever proven that no polynommétalgorithm can exist for any NP-Complete
problem.

A problemp € NP, and any other problepi can be translated g@sin poly time. So, ifp can be
solved in poly time, theall problems in NP can be solved in poly time.

1.3 Optimization Problems and Decision Problems

Many problems of interest areptimization problemsin which each feasible (i.e., “legal”)
solution has an associated value, and we wishnib di feasible solution with thieestvalue. For
example, in a problem that we call SHORTEST-PATH, are given an undirected graghand
verticesu andv, and we wish to find a path fromto v that uses the fewest edges.

NP-completeness applies directly not to optimizatijproblems, however, but tdecision
problems in which the answer is simply “yes” or “no” (anore formally, “1” or “0”). We usually can
cast a given optimization problem as a relatedsi@ciproblem by imposing a bound on the value to
be optimized. For SHORTEST-PATH, for example, atexl decision problem, which we call PATH,
is whether, given a directed grafh verticesu andv, and an integek, a path exists fronu to v
consisting of at modt edges.

14 Reductions
Given two problems A, B, we say that A is reducitold3 (A <, B) if:

1. There exists a functicf thatconvertsthe inputsof A to inputs of B in polynomial tin.
2. A(i) = YES « B(f(i)) = YES. [i.e., for an inputi, A will be satisfied if and only if Ef(i))
satisfies.]

15 Polynomial Reduction Algorithm
To solve a decision problem A in polynomial ti,

1. Use a polynomial time reduction algorithm to tramsf A into E
2. Run a known polynomial time algorithm fo!
3. Use the answer for B as the answer f

yes

A f B| Polynomialtime | =~
algorithm to decide B [55~ "o

Polynomial time algorithm to decide A

1.6 Proving a L anguage to be NP-Complete
1. Prove Le NP.
2. Select a known NBemplete language'.

3. Describe an algorithm that computes a funcf mapping every instan € {0, 1}* of L' to an
instanced(x) of L.

4. Prove that the functidnsatisfiesx € L' if and only iff(x) € L for all x € {0, 1}".
5. Prove that the algorithm comput f runs in polynomial time.
1.7 NP-completeness proof structure

(SAT)

b
@-CNF-SAT)

.
s (oo

1.8 Circuit Satisfiability Problem
Given a Boolean combinational circuit composed ol ANDR, and NOT, is itatisfiable?
CIRCUIT-SAT={<C>: C is a satisfiablBoolean circuit}

19 Formula Satisfiability Problem

We formulate the (formula) safiability problem in terms of the language < as follows. An
instance of SAT is a@lean formulap composed ¢

1. n Boolean variables, Xo,..., Xn;

2. m Boolean connectives: aiBoolean functiorwith one or two inputs and o output, such as
(AND), v (OR), = (NOT),— (implication),« (if and onlyif); and

3. parentheses. (Without loss of generality, wai@gsthat there are no redunc parentheses,
i.e., there is at most one paitparentheses per Boolean connective.)
2

As in Boolean combinational circuits,teuth assignment for a Boolean formula is a set of
values for the variables af, and asatisfying assignment is a truth assignment that causes it to
evaluate to 1. A formula with a satisfying assignie a satisfiable formula. The satisfiability
problem asks whether a given Boolean formula isfsable; in formal-language terms,

SAT = {<¢>: ¢ is a satisfiable Boolean formula}
As an example, the formula

0= (X1 — %) V ((=X1 > X3) V Xa)) A =X
has the satisfying assignment < 0,x; = 0,x3 = 1,X4 = 1>, since

¢=(0—0)V-((-0- 1)V 1)A-0
=(1lv-(Av)al

=(1voAal

=1,

and thus this formule belongs to SAT.

Theorem: Satisfiability of Boolean formulasis NP-complete.
Proof:
1. SAT € NP.

To show that SAT belongs to NP, we show that aifate consisting of a satisfying
assignment for an input formula can be verified in polynomial time. The verifying
algorithm simply replaces each variable in the falanwith its corresponding value and then
evaluates the expression. This task is easily donpolynomial time. If the expression
evaluates to 1, the formula is satisfiable.

O SAT e NP.
X1 Xa
X2
% .
X3 {>C

2. CIRCUIT-SAT <p SAT.
X5

The figure above illustrates the basic idea ofrdduction from CIRCUIT-SAT to SAT. For
each wirex in the circuitC, the formulap has a variable;. The proper operation of a gate
can now be expressed as a formula involving thesbkaes of its incident wires.

For example, the operation of the output of ANDegaks <> (X4 A Xs).

The formulag produced by the reduction algorithm is the ANDitgeé circuit-output variable
with the conjunction of clauses describing the apen of each gate.

For the circuit in the figure, the formula is
P =X A (Xa > (X1 A X)) A (X5 > X3)) A (X6 > (Xa A Xs))
Given a circuit C, it is straightforward to produsigch a formul® in polynomial time.

Now, circuit C is satisfiable exactly when the formupais satisfiable. If C has a satisfying
assignment, each wire of the circuit has a welirgef value, and the output of the circuit is 1.
Therefore, the assignment of wire values to vaeslme makes each clause efevaluate to

1, and thus the conjunction of all evaluates t&€anversely, if there is an assignment that
causes to evaluate to 1, the circuit C is satisfiablednyanalogous argument.

Thus, we have shown that CIRCUIT-SAF SAT, which completes the proof.

1.10 3-CNF Satisfiability

Many problems can be proved NP-complete by redacfrom formula satisfiability. The
reduction algorithm must handle any input formakeugh, and this requirement can lead to a huge
number of cases that must be considered. It i) afesirable, therefore, to reduce from a restricted
language of Boolean formulas, so that fewer cased be considered. Of course, we must not restrict
the language so much that it becomes polynomiad-sivable. One convenient language is 3-CNF
satisfiability, or 3-CNF-SAT.

We define 3-CNF satisfiability using the followirigrms. Aliteral in a Boolean formula is an
occurrence of a variable or its negation. A Booleamula is inconjunctive normal form, or CNF, if
it is expressed as an AND of clauses, each of wiidhe OR of one or more literals. A Boolean
formula is in3-conjunctive normal form, or 3-CNF, if each clause has exactlyeedistinctliterals.

For example, the Boolean formula
(VX VX)) A (X3 V X2V Xg) A (5X1 V X3 V —1Xyg)

is in 3-CNF. The first of its three clausesxg ¥ —x; V —Xp), which contains the three literats
-X, and x.

111 The Clique Problem

A clique in an undirected graph G ¥,(E) is a subset of vertices Wall connected to each other
by edges itk (i.e., forming a complete graph).

Thesize of a clique is the number of vertices it contains. (
For example, in the graph beside, the nodes A, BErorms a clique of e
size 3. / >

The clique problemis the optimization problem of finding a clique of Q G
maximum size in a graph. As a decision problem agle simply whether a clique of a given ske
exists in the graph. The formal definition is:

CLIQUE = {<G, k> : G is a graph with a clique of six§

Theorem: Theclique problem is NP-complete.
Proof:
1. CLIQUE € NP.

To show that CLIQUEE NP, for a given graph G = (V, E), we use the secW of vertices
in the clique as a certificate for G. Checking wieetV is a clique can be accomplished in
polynomial time by checking whether, for each paw € V', the edgey, v) belongs tc.

2. 3-CNF-SAT<p CLIQUE.
The reduction algorithm begins with an instanc8-GINF-SAT.
Leto = C A Cy A ... A Ccbe a Boolean formula in 3-CNF wikitlauses.
Forr =1, 2, ...k, each clause as exactly three distinct literdls [5 andls.
We shall construct a graph G such thas satisfiable if and only if G has a clique ofesk.

The graph G = (V, E) is constructed as follows. Bach clause C=1] V I} V I} in ¢, we
place a triple of vertices[, v; andv into V. We put an edge between two verticgsand
v;j if both of the following hold:

1. v{ andv; are in different triples, that is#'s, and
2. their corresponding literals acensistentthat is,l; is not the negation df.

This graph can easily be computed frgmin polynomial time. As an example of this
construction, if we have

0= VXV X)A (X1 VX2V X3) A (X1 V X2V X3),
then G is the graph shown in the following figure.

Cir=x1 V=X V—x;

C: == Vimnyvi

C:J, =X VIV

Now, we must show that this transformationpahto G is a reduction.

[FT=S JIeER, SN 2ol FCo A @, FAEAICS @ FA6! clause TR, cligue-9d AZq oo |
Q¥e, TS A AR @, clausedTT AND SRER Stz OF Wi, 2feBl claused™ 1 a1 =7,
SR IR TG satisfy I 71 (satisfy FACA a1 A FHEAR @E@I6 1 =A@) | SI=E, W
o clauset® 1 O =, O (@9 clausedd WK S@OACHF GF0! literal-a3 O SR*72 1 20O
TE | N ACE ATHF clauseTE exactly 96T 0 (& e @G corresponding literakld
O] 1 (9N AW GO literal-93 OFi] 1 TR ACH, SRARS SN (@ QI3 FeafR) | ok
fAfbeeitd IO clause™ITR, clique-dd F2E OO | G, SNMACE SR AN FACe A @,
@Bl @I clique, SR, QAT (FIOHT 2ATONE ATONFA A FABE | A IW @, A&l all
possible edge W@ (ETT =@, @A @9 literal ©1F complement literaldd At FICg
FIEACR; TR x-GF AN —x FIA3 FE@ AN edge ST W qi3) | JoAR, AFO! FABE | T,
@51 93BT clique T AZS number of claus&d 14 |

THER PR S TEHIORS I#0e =01 SR, ST TATH &iel Fce P Fell (/e e
ATAR | Q¥ TR ATF (@A TS @S I | P2 FANTE S0l F 60O A | @F: AH
2feBl (Ited &) corresponding@dB! W@ clause? NS TR; SAE, AH AT (FICER
correspondingditeral-43 ©FF 1; ORI ATFG! PR fFF @3 & T satisfied 20 AT T3S
2@ & TR number of clausetd T |

% FATE STAETS 742 20| b I2EF GALHT Qe NS =71

First, suppose thag has a satisfying assignment. Then each claysm@ains at least one
literal I} that is assigned 1, and each such literal correlpto a vertex; . Picking one such
“true” literal from each clause yields a setof k vertices. We claim that "is a clique. For
any two vertices;, v;' € V', where r#£ s, both corresponding literalls andl; are mapped to

1 by the given satisfying assignment, and thuslitamls cannot be complements. Thus, by
the construction of G, the edge (v;) belongs to E.

Conversely, suppose that G has a cliguef\sizek. No edges in G connect vertices in the
same triple, and so'\¢éontains exactly one vertex per triple. We catigas$ to each literall
such that] e V' without fear of assigning 1 to both a literal atelcomplement, since G
contains no edges between inconsistent literalsh ERuse is satisfied, and ¢as satisfied.
(Any variables that do not correspond to a ventethe cligue may be set arbitrarily.)

[Note that a satisfying assignment of the formulsha 0, X3 = 1, and % may be eithe® or
1 (don't carg. This assignment satisfies, @ith -x,;, and it satisfies €and G with X,
corresponding to the clique with lightly shadedties]

5

1.12

1.13

1.14

The Vertex-Cover Problem

A vertex cover of an undirected grap& = (V, E) is a subseV' € V
such that if ¢, v) € E, thenu € V' orv € V' (or both). That is, each verte:
“covers” its incident edges, and a vertex cover@ds a set of vertices tha
covers all the edges B

The size of a vertex cover is the number of vestiogat.

For example, the graph in the figure beside hasri@x cover v, z} of size 2.

The vertex-cover problerns to find a vertex cover of minimum size in aguvgraph. Restating
this optimization problem as a decision problem,wigh to determine whether a graph has a vertex
cover of a given sizk As a language, we define

VERTEX-COVER = {<G, k>: graphG has a vertex cover of sikp
The Hamiltonian Cycle Problem

A Hamiltonian cycle of a directed grap® = (V, E) is a simple cycle that contains each vertex in
V.

The Hamiltonian cycle problenis to find an ordering of the vertices such thathevertex is
visited exactly once.

The Traveing-Salesman Problem

In the traveling-salesman problem, which is clogelated to the Hamiltonian-cycle problem, a
salesman must visit cities. Modeling the problem as a complete grajth wvertices, we can say
that the salesman wishes to make a tour, or Hammaltocycle, visiting each city exactly once and
finishing at the city he starts from. There is ateger cost(i, j) to travel from cityi to cityj , and
the salesman wishes to make the tour whose tagali€oninimum, where the total cost is the sum of
the individual costs along the edges of the toor. é&xample, in the figure below, a minimum-cost
tour is <u, w, v, X, &, with cost 7. The formal language for the coroegpng decision problem is

TSP ={<G, ¢, k>: G = (V, E) is a complete graph,
cis a function fronV xV — Z,

ke Z and
G has a traveling-salesman tour with cost at rkpst

Theorem: The Traveling-Salesman problem is NP-complete.
Proof:
1. TSPe NP.

Given an instance of the problem, we use as dficaté the sequence ofvertices in the
tour. The verification algorithm checks that thégjgence contains each vertex exactly once,
sums up the edge costs, and checks whether théssainmosk. This process can certainly
be done in polynomial time.

2. HAM-CYCLE <p TSP.

Let G = {V, E) be an instance of HAM-CYCLE. We construct ananse of TSP as follows.
We form the complete graph & (V', E'),whereE' = {(i, }): i,] € V andi #j}, and we define
the cost functiort by

(—

.. _(0if (i,j) € E 1
61 ={3 i i) e A &
(Note that because G is undirected, it has nolseffs, and 3 2 0
soc(v, v) = 1 for all verticess € V.) The instance of TSP is ‘ ‘
D= O

then <G, c, 0>, which is easily formed in polynomial time. ()
[An example of this construction is shown in thergj G=(V.E) G'=(V,E)

6

We now show that graph G has a Hamiltonian cycéd only if graph Ghas a tour of cost
at most O.

[3T2% AIER, SN 2N FA00 T @, G ATF Hamiltonian cycledFa W ¢ @<t W G
ATF @ tour AMCF T ACEH costZ 01 @2, G' AMFGI INTONT (off Tl AR @ G
&tF9 Hamiltonian cycled @ @ edge™ity, G' AtF CPE edgedd cost O Yok, G AT
tour~¢ G' &ItF 0 cost¥ execute<l T |

TR, [eRreeE, SINmAcE ave F900 @ @, G AltFa @ 0 costdd tour @ IFe edge
cover I, CPR edge® G AT edge @RY G' 4ATF (I35 0 ™F 1 costdd edged ST,
BIZ GTLI @9 tour-Aa3 cost 0208 T @ tour-a3 AP edgedd costTR*T3 0 IS A1 K 0
costdd edge ¥ &FCATF G AFA edge AR, G' &ACF AE® 0 costdd tour @ el
edge cover<(d, CPK edgex G AT edge

% FASTE SRS 742 20| b I2EF GALH! Qe ST =7 1]

Suppose that graph G has a Hamiltonian clicleach edge it belongs tcE and thus has
cost 0 in G. Thudyis a tour in G with cost 0.

Conversely, suppose that graph G has ahbaf cost at most 0. Since the cost of the edges
in E' are 0 and 1, the cost of touiris exactly 0 and each edge on the tour must hase(c
Therefore h' contains only edges iB. We conclude thal' is a Hamiltonian cycle in graph
G.

APPROXIMATION ALGORITHMS

Concepts

21

2.2

2.3

24

Approachesto getting around NP-completeness

> Exponential time may be acceptable for small inpBitste Force]
> Isolate special cases that can run in polynomag [DC, GRDY, DP]
» Near-optimal solutions may be acceptdBpproximation Algorithms]

Approximation Algorithms
An algorithm that returns near-optimal solutionsafled an approximation algorithm.
Performance Ratios for Approximation Algorithms

Suppose that we are working on an optimization lerakin which each potential solution has a
positive cost, and we wish to find a near-optimalugon. Depending on the problem, an optimal
solution may be defined as one with maximum possibist or one with minimum possible cost; that
is, the problem may be either a maximization orignmzation problem.

We say that an algorithm for a problem hasapproximation ratio of p(n) if, for any input of
sizen, the cosC of the solution produced by the algorithm is witlai factor ofp(n) of the cosC* of
an optimal solution:

max(£,£) 2400

We also call an algorithm that achieves an appration ratio ofp(n) a p(n)-approximation
algorithm. The definitions of approximation ratio andggh)-approximation algorithm apply for both
minimization and maximization problems.

For a maximization problem, 0& < C*, and the raticC*/C gives the factor by which the cost of
an optimal solution is larger than the cost ofdapproximate solution.

Similarly, for a minimization problem, 0 €* < C, and the raticC/C* gives the factor by which
the cost of the approximate solution is larger tthencost of an optimal solution.

Since all solutions are assumed to have positigg, these ratios are always well defined. The
approximation ratio of an approximation algoritremiever less than 1, sinC&C* < 1 impliesC*/C >
1. Therefore, a 1-approximation algorithm produes optimal solution, and an approximation
algorithm with a large approximation ratio may reta solution that is much worse than optimal.

Approximation Algorithm for the Vertex-Cover Problem

Consider the graph beside. By inspection, t
optimal vertex cover islf, d, € and the size of 0
optimal solutionC* = 3.

An approximation algorithm for the vertex-cove
problem is as follows:

APPROX-VERTEX-COVERG)

1 C—0 /I C contains the result of vertex cover
2 E' < E[G] // initially all edges are stored here

3 whileE'#£0 /I all edges that are not considered yet
4 do lety, v) be an arbitrary edge & // select an edge frof

5 C—Cu{uv} // add vertices of the selected edg€to
6 remove frorg' every edge incident on eitheior v

/Il delete all edges related to the verticemdv

\‘

returnC

2.5

Applying this algorithm for the graph above, we gat following graph along with the vertex
cover (the initial contents of the arr&yis also shown):

Analysis of thealgorithm
e Running time:

e O(V+E): if we use adjacency list.
e 2-Approximation Algorithm

e Minimization problemC*=3;C=6
e Factor =C/C*=2

‘ C:. abcdef Approximate vertex cover, C=6 ‘

‘ E': (a,b) (b,c)(c,d)(c,e)(d,e)(df) (d,g)(ef) ‘

Theorem: APPROX-VERTEX-COVER isa polynomial-time 2-approximation algorithm

[SITR B1EefB =& @Bt &Nt S0 @, C/C* = 21 92, generafSitd C oI C*-¥3 T ¥ S A2
ARY GBI @I minimization problem o<k, SNMACE &WC® *(I optimal solution®AT C*-ag I
FIg T© Te ANF| (73 N GBI8 ([@F FACo I @, approximate solutiol C-a3 N FF/5% F© 20O
AIE (worst caseitab=l IO TA) | G FB! A (@F FAK & S C | C*-(F edgedd A T
TG B8 F99, I SN ATOIRAIA Q6! edgef GG (ATH2 vertex covel@d IR (H31 I |

2T MR C*-9F T (Y F© Tro 2T 1 4, SN ATSIFAR T @F6! A edge2, o349 @67 A
wpicace A1 @9, no two edges i\ share an endpoint((@=, SIS (a, b) edgef @ A-® IET A-CS
F (@9 edge AFCS AKE 7 @ACH a SAF b SR 1) IR, SNA 96! edge (ST 27 approximation
algorithmad u¥ 30 9 TS edged @ edgedd endpoint™itg, G edge(@ WA @ 1 Foar, A-
@3 M @R (ACC Srd AT, G uniquel SIRIE, G0 ST @ 1 @, C*-93 936 @€ A9
OFIfeF edge@ IR I O, C*-a SR*2 A-93 G edgedd G PFIF qI0 IR @C
AFE | IR C*-a3 T I |C* > A

Q¥ @R C-93 T A& F© 20O AT | approximation algorithn® Tl A-CS T49 @I edge @Sl
2, ©4F OF &) C-CS VBT (A6 (S A | I C-GF A N 2o I |C|= 2Al

@ TIBT S combineF @ “eaT AN: % <2]

The loop on lines 3-6 repeatedly picks an edge)(from E', adds its endpointsandv to C, and
deletes all edges &' that are covered by eitheror v. The running time of this algorithm &V + E),

using adjacency lists to represdfit Therefore, APPROX-VERTEX-COVER runs in polynomial
time.

The set C of vertices that is returned by APPROXRVEX-COVER is a vertex cover, since the
algorithm loops until every edge EjG|] has been covered by some vertex in C.

To see that APPROX-VERTEX-COVER returns a vertexecdhat is at most twice the size of
an optimal cover, leA denote the set of edges that were picked in lired APPROX-VERTEX-
COVER. In order to cover the edgesAnany vertex cover — in particular, an optimal co@ —
must include at least one endpoint of each edde Mo two edges i\ share an endpoint, since once
an edge is picked in line 4, all other edges thatirecident on its endpoints are deleted filehm line
6. Thus, no two edges fare covered by the same vertex froif) &d we have the lower bound:

|C¥|>|A| ...(1) on the size of an optimal vertex cover.

Each execution of line 4 picks an edge for whicithee of its endpoints is already in C, yielding
an upper bound (an exact upper bound, in facthersize of the vertex cover returned:

ICl|=2]A] ...(2)
Combining equations (1) and (2), we obtain
IC| =2 |A]
<2\,

thereby proving the theorem.

