

TOUCH-N-PASS EXAM CRAM GUIDE SERIES

OOP IN JAVA

Special Edition for CSE, DUSpecial Edition for CSE, DUSpecial Edition for CSE, DUSpecial Edition for CSE, DU StudentsStudentsStudentsStudents

StudentsStudentsStudentsStudents

� Theory questions and answers from all the topics for exam.
� All needed concepts in just one place for each chapter.
� List of points which should be remembered so that one

does not become confused at exam.
� All-in-one complete concepts programs for each chapter.
� Exercises with solutions for practice.
And much more…

Includes Solutions to DU
Java Final Exam

Questions of
6 Years (2002-2007)

Prepared By

Sharafat Ibn Mollah Mosharraf

CSE, DU

12
th

 Batch (2005-2006)

Second Edition

OOP in Java
By: Sharafat Ibn Mollah Mosharraf
sharafat_8271@yahoo.co.uk
www.sharafat.info

First Edition: May, 2008.
Second Edition: March, 2009.

NO RIGHTS RESERVED

Any part of this book may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and recording or by any information storage and retrieval system,
without permission of the author.

In fact, the students are encouraged to enrich this guide by adding more materials and solutions for DU
final exam as well as in-course exam question papers to it.

How This Book is Organized

The book is organized as follows:

� The chapter numbers are assigned according to the chapter numbers in the text book (Java – The
Complete Reference, By Herbert Schildt, 7th Edition).

� Each chapter is divided into five parts (in most cases) as follows:
1. Theories: Includes all the theories I could find or think of from the chapter.
2. Concepts: Includes all the concepts discussed in the chapter.
3. Points to be Remembered: Includes a list of points to be remembered for successfully

solving problems of types error-finding or output generating. Footnotes indicating the
passages in the text book where the points are discussed in detail are added to each point.

4. Complete Concepts Programs: Includes one or more all-in-one programs where all the
concepts of the chapter are applied and demonstrated.

5. Exercises: Includes some exercises to practise. Solutions as well as explanations are given at
the end of each problem.

� Questions which appeared on the previous year final exams (from 2002-2007) as well as in the three
in-course exams on 2007 and two in-course exams on 2008 are marked by appending the year and
marks inside square brackets to the questions.

� Importance of theory question / concept / exercise etc. are marked using a number of stars.
� Due to many reasons, the topics on Applets, GUI and Network Programming have not been included.

On the Website

The following materials can be found on the website for this book (http://guides.sharafat.info/java):

� The electronic copy of the book (in PDF, DOCX and DOC formats).
� Java source code (in NetBeans Project form) for many exercises and complete concepts programs

from this book.
� Recommendations on books and tutorials for learning Java and Swing and links to download those

books or tutorials.
� A discussion on which IDE is the best for developing Java applications.
� Links to sites containing lots of MCQ-type problems on Java.
� Some other useful links regarding Java programming.

Dedicated to my dear friends and classmates.
It is only because of them that this valuable

work has come into existence.

Table of Contents

Chapter 1 (& 2): The History, Evolution and Overview of Java 1-2

 Theories 1

Chapter 3 (& 5): Data Types, Variables, Arrays and Control Statements 3-11

 Theories 3

 Concepts 4

 Points to be Remembered 6

 Complete Concepts Program 7

 Exercises 9

Chapter 4: Operators 12-14

 Theories 12

 Concepts 12

 Points to be Remembered 13

 Exercises 13

Chapter 6 (& 7): Classes, Objects, Methods and Fields 15-28

 Theories 15

 Points to be Remembered 19

 Complete Concepts Program – Class, Objects and Methods 20

 Complete Concepts Program – Inner Classes 22

 Exercises 23

Chapter 8: Inheritance, Abstract Classes and Interface 29-41

 Theories 29

 Points to be Remembered – Inheritance 34

 Points to be Remembered – Abstract Classes 35

 Points to be Remembered – Interfaces 35

 Exercises 36

Chapter 9: Packages 42-45

 Theories 42

 Concepts – Rules for Package Access Specifiers 42

 Complete Concepts Program 43

 Exercises 44

Chapter 10: Exception Handling 46-57

 Theories 46

 Concepts 47

 Points to be Remembered 48

 Complete Concepts Program – How an Exception is Handled 49

 Complete Concepts Program – How to Create a User-Defined Exception 49

 Exercises 50

Chapter 11: Multithreaded Programming 58-63

 Theories & Concepts 58

 Exercises 61

Chapter 19: File I/O and Taking Input From Keyboard 64-71

 Theories 64

 Concepts 64

 Complete Concepts Program 66

 Exercises 68

Chapter 35: Wrapper Classes, String, Generics and The Collections Framework 72-78

 Theories 72

 Concepts – Primitive Types and Their Respective Wrapper Types 73

 Concepts – String Constructors and Methods 73

 Concepts – Comparative Analysis of the Methods of ArrayList and Vector Classes 74

 Points to be Remembered 75

 Complete Concepts Program – ArrayList and Vector 75

 Complete Concepts Program – String 76

 Exercises 76

1

Chapter 1 (& 2)

The History, Evolution and Overview of Java

Theories

�� 1.1 Describe the useful features of object-oriented programming over the procedure-
oriented (or structured) programming language. [2003. Marks: 3]

OOP language has the following advantages over structured programming language:

1. Data abstraction

In structured languages, data abstraction or hiding is achieved through only local
and global variables, whereas in object-oriented languages, a higher degree of data
abstraction is achieved through the uses of objects and access modifiers.

2. Inheritance

In object-oriented languages, an object can get its general attributes from its parent
through a mechanism called ‘inheritance’, without copying and editing the code of
the parent object. But in case of structured languages, this cannot be done without
copying and editing huge amount of code, and thus leaving a great scope for making
mistakes.

3. Polymorphism

In object-oriented languages, a single named method can be used to operate on
different types of data, which is known as ‘polymorphism’. However, in structured
languages, differently-named methods are needed to operate on different types of
data, thus bearing the stress of remembering more than one names for a single job.

� 1.2 Why Java is called platform independent? [2003. Marks: 2]

Java does not compile a program directly to machine code; rather it translates a program
to an intermediate code named bytecode, which is later interpreted by JVM to respective
machine codes. Thus, a single program can be run on any platform. This is why Java is
called platform independent.

��� 1.3 What is bytecode? Explain its usefulness while translating a Java program in a
wide variety of environments. [2003. Marks: 4]

OR, How does Java make platform independence possible?

Java makes platform independence possible by translating a program into bytecode
instead of machine code.

Bytecode is a highly optimized set of instructions designed to be executed by the Java
run-time system or JVM (Java Virtual Machine).

Translating a Java program into bytecode makes it much easier to run a program in a
wide variety of environments, because only the JVM needs to be implemented for each
platform. Once the run-time package exists for a given system, any Java program can run on
it. Although the details of the JVM will differ from platform to platform, all understand the
same Java bytecode. If a Java program were compiled to native code, then different
versions of the same program would have to exist for each type of CPU. Thus, the
execution of bytecode by the JVM is the easiest way to create truly portable programs.

 1.4 Explain the following OOP terminologies: [2004. Marks: 4]

i) Data Abstraction
ii) Inheritance

Data Abstraction:

2

Abstraction refers to the act of representing essential features without including the
background details or explanations. Hence, data abstraction means hiding detailed data from
object behaviors. Objects can be treated as concrete entities that respond to messages telling
them to do something, without knowing the details of how they would do it.

Inheritance:

Inheritance is the process by which one object acquires the properties of another object.
By use of inheritance, an object would need only define those qualities that make it unique
within its class. It can inherit its general attributes from its parent. Thus, it is the inheritance
mechanism that makes it possible for one object to be a specific instance of a more general
case.

 1.5 What is polymorphism? How does polymorphism promote extensibility? [2004.
Marks: 3]

Polymorphism is a feature that allows one interface to be used for a general class of
actions. The specific action is determined by the exact nature of the situation.

By dint of polymorphism, it is possible to design a generic interface to a group of
related activities. This helps reduce complexity by allowing the same interface to be used to
specify a general class of action. It is the compiler’s job to select the specific action as it
applies to each situation. The programmer does not need to make the selection manually.
He needs only remember and utilize the general interface. In this way, polymorphism
promotes extensibility.

 1.6 How Java changed the internet?

OR, What is the usefulness of Java with regard to internet?

Java addressed some of the thorniest issues associated with the internet: portability and
security. They are described below.

Portability:

Portability is a major aspect of the internet because there are many different types of
computers and operating systems connected to it. As Java is a portable language, programs
written in it runs just fine in any platform. Thus, Java solves the issue of portability.

Security:

Whenever a program is downloaded, there lies a risk, because the code downloaded may
contain a malware or other harmful code. In order to ensure protection, Java confines an
applet to the Java execution environment and does not allow it to access other parts of the
computer.

 1.7 What are the core parts of OOP? Describe them in brief.

The core parts of OOP are:

1. Encapsulation
2. Inheritance
3. Polymorphism

Encapsulation is the mechanism that binds together code and the data it manipulates,
and keeps both safe from outside interference and misuse.

Inheritance is the process by which one object acquires the properties of another object.
By use of inheritance, an object would need only to define those qualities that make it
unique within its class. It can inherit its general attributes from its parent. Thus, it is the
inheritance mechanism that makes it possible for one object to be a specific instance of a
more general case.

Polymorphism is a feature that allows one interface to be used for a general class of
actions. The specific action is determined by the exact nature of the situation.

3

Chapter 3 (& 5)

Data Types, Variables, Arrays and Control Statements

Theories

 3.1 What do you mean by dynamic initialization of a variable in Java? Give an
example. [2003. Marks: 3]

In Java, a variable can be initialized dynamically using any expression valid at the time
the variable is declared. This is called dynamic initialization of a variable.

class Area {
 public static void main(String[] args) {
 float height = 2.0f;
 float width = 3.0f;
 float areaOfTriangle = 1 / 2 * height * width;
 }
}

In the above example, variables a and b are initialized by constants, but variable c is
initialized dynamically using the expression 1 / 2 * height * width .

� 3.2 How a block is defined in Java? Discuss with suitable example the scope and
lifetime of a variable with respect to block. [Incourse-1, 2008. Marks: 4]

OR, What do you understand by scope and lifetime of a variable? Explain with
examples. [2002. Marks: 4]

In Java, a block is defined using the curly braces – { }.

The scope of a variable determines to which extent that variable can be seen or used in a
program.

The lifetime of a variable decides how long the storage for that variable exists in
memory.

class Scope {
 public static void main(String[] args) {
 int x; //known to all code within main
 x = 10;
 if (x == 10) {
 int y = 20; //known only to this 'if' block

 //x and y both are known here
 System.out.println("x and y: " + x + " " + y);
 x = y * 2;
 }
 // y = 100; //Error! y is not known here

 //x is still known here
 System.out.println("x is: " + x);
 }
}

In the above example, as the comments indicate, the variable x is declared at the start of
main() ’s scope (or block) and is accessible to all subsequent code within main() . Within
the if block, y is declared. Since a block defines a scope, y is only visible to other code
within its block.

Again, the variable x is created at the beginning of the main() method (or block). So,
its lifetime is until the end of the method / block. Variable y is created inside the if block.
Hence, its lifetime is until the block ends.

� 3.3 What are the differences between
type promotion? [2002. Marks: 2]

Automatic conversion
conversion between incompatible

While evaluating expressions,
values to int; and in case of the presence of a float or double, they are promoted to float or
double respectively. This is called automatic t

�� 3.4 What are the differences between the constants 7, ‘7’ and “7”?

7 is an integer literal, ‘7’ is a character literal, and “7” is a string literal.

 3.5 Is the switch statement more efficient than the

Yes, the switch statement is more efficient than the if statement.

When Java compiles a switch statement, the compiler inspects each of the case constants
and create a “jump table” that it will use for selecting the path of execution depending on the
value of the expression. Therefore, when it is needed to select among a large group of values,
a switch statement will run much faster than the equivalent logic coded using a sequence of
if-elses.

 3.6 How does a switch

A switch statement differs from the if in that
can evaluate any type of boolean expressions.

Concepts

 3.1

 3.2
Escape Sequence
\ ddd

\ uxxxx

\’

\”

\\

\r

\n

\f

\t

\b

Integers

byte short

4

What are the differences between type conversion and casting
[2002. Marks: 2]

onversion between compatible types is called type conversion
incompatible types is called type casting.

While evaluating expressions, Java automatically promotes all byte, short and char
and in case of the presence of a float or double, they are promoted to float or

This is called automatic type promotion.

What are the differences between the constants 7, ‘7’ and “7”?

7 is an integer literal, ‘7’ is a character literal, and “7” is a string literal.

statement more efficient than the if statement? Why?

statement is more efficient than the if statement.

When Java compiles a switch statement, the compiler inspects each of the case constants
and create a “jump table” that it will use for selecting the path of execution depending on the

ion. Therefore, when it is needed to select among a large group of values,
a switch statement will run much faster than the equivalent logic coded using a sequence of

switch statement differ from an if statement?

statement differs from the if in that switch can only test for equality, whereas
can evaluate any type of boolean expressions.

Escape Sequence Description
ddd Octal Character (ddd)

uxxxx Hexadecimal Unicode Character

Single Quote

Double Quote

Backslash

Carriage Return

New Line (a.k.a. line feed)

Form Feed

Tab

Backspace

Data
Types

User Defined
Types (Classes)

Primitive
Types

Integers

int long

Floating-Point
Numbers

float double

casting? What is automatic

type conversion, and manual

Java automatically promotes all byte, short and char
and in case of the presence of a float or double, they are promoted to float or

What are the differences between the constants 7, ‘7’ and “7”?

7 is an integer literal, ‘7’ is a character literal, and “7” is a string literal.

statement? Why?

statement is more efficient than the if statement.

When Java compiles a switch statement, the compiler inspects each of the case constants
and create a “jump table” that it will use for selecting the path of execution depending on the

ion. Therefore, when it is needed to select among a large group of values,
a switch statement will run much faster than the equivalent logic coded using a sequence of

statement?

can only test for equality, whereas if

Hexadecimal Unicode Character (xxxx)

User Defined
Types (Classes)

Characters

char

Boolean

boolean

 3.3 Data
Type

Width
(Bits)

byte 8

short 16

int 32

long 64

float 32

double 64

boolean 1

char 16

 3.4

 3.5 Type Compatibility and automatic type

 To
From

byte

byte Y

short N

int N

long N

float N

double N

char N

boolean N

1 Notice that we can assign char type variable to int, float, long or double. But we cannot assign byte or short type variables
char. This is because char type is unsigned, whereas byte and short types are signed.

Selection
Statements

if switch

5

Width

Range

(-28 / 2) to (28 / 2 – 1) byte b = 6;

(-216 / 2) to (216 / 2 -1) short s = 1024;

(-232 / 2) to (232 / 2 -1) int i = 50000;
int i = 05;
int i = 0 x
int i = 0 X

(-264 / 2) to (264 / 2 -1) long l = 999999999
long l = 999999999
long l = 9999999999;

1.4e-45 to 3.4e+38

(with 7 significant
digits)

float f = 1.6736421
float f = 1.673
float f = 1.673

4.9e-324 to 1.8e+308

(with 15 significant
digits)

double d = 5.98
double d = 5.98
double d = 5.98

true or false boolean b = true;
boolean b = false;

′\u0000′ to ′\uFFFF′ char c = ′

char c = ′

Type Compatibility and automatic type conversion:1

short int long float double

Y Y Y Y

Y Y Y Y

N Y Y Y

N N Y Y

N N N Y

N N N N

N Y Y Y

N N N N

Notice that we can assign char type variable to int, float, long or double. But we cannot assign byte or short type variables
char. This is because char type is unsigned, whereas byte and short types are signed.

Control
Statements

Iteration
Statements

for for-each while do-while

Declaration

b = 6;

s = 1024;

i = 50000; //decimal
i = 05; //octal

x5A; //hexadecimal
X5a; //hexadecimal

l = 999999999 l ;
l = 999999999 L;
l = 9999999999; //error

f = 1.6736421 f ;
f = 1.673 e232 f ;
f = 1.673 E-23 F;

d = 5.98 e-105;
d = 5.98 e+105 d;
d = 5.98 e105D;

b = true;
b = false;

′! ′;

′\u0995 ′; // �

double char boolean

Y N N

Y N N

Y N N

Y N N

Y N N

Y N N

Y Y N

N N Y

Notice that we can assign char type variable to int, float, long or double. But we cannot assign byte or short type variables to

while

Jump
Statements

break continue

6

Points to be Remembered

�� 3.1 Integer literals2 can be represented in decimal, octal or hexadecimal format. But
floating-point literals can be represented only in decimal format.3

�� 3.2 Octal values are denoted in Java by a leading zero. Normal decimal numbers cannot
have a leading zero. Hexadecimal values are represented using a leading zero-x (0x or 0X).4

� 3.3 All integer literals are by default of type int . So, to declare a literal as type long , an l
or L should be appended to it.5

��� 3.4 All floating-point literals are by default of type double . So, to declare a literal as type
float , an f or F must be appended to it.6

 3.5 A double literal can be declared by appending d or D to it, but it is not essential.7

��� 3.6 Boolean literals are only true or false . A true literal does not equal 1, nor does the
false literal equal 0.8

��� 3.7 A block defines a scope and a variable is visible within that block.9 The scope defined
by a method begins with its opening curly brace. However, if that method has parameters,
they too are incuded within the method’s scope.10

� 3.8 Variables declared inside a scope are not visible (i.e., accessible) to code that is defined
outside that scope.11

��� 3.9 When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are met:

1. The two types are compatible.
2. The destination type is larger than the source type.12

��� 3.10 When a larger integer type value is cast into a smaller integer type value, it is reduced to
the smaller type’s modulo range.13 But when a double value is cast into a float value and the
value’s range is out of the range of float, then the float value will contain infinity.

��� 3.11 Type Promotion Rules:

First, all byte , short and char values are promoted to int . Then, if one operand is
a long , the whole expression is promoted to long . If one operand is a float , the entire
expression is promoted to float . If any of the operands is double , the result is
double .14

 3.12 Type promotion rules are applicable when an expression containing a variable is
evaluated, but when an increment/decrement (++ , --) or arithmetic compound assignment
operators (+= , -= , *= , /= , %=) are performed on a variable, no casting is needed even if

2 Literal is a constant value which is assigned to a variable to be used to evaluate expressions. For example, consider the
following:

100 98.6 'a' "Hello" true

Here, 100 is an integer literal, 98.6 is a floating-point literal, 'a' is a character literal, "Hello" is a string literal, and true
is a boolean literal.
3 p.39, topic: “Integer Literals”.
4 p.39, topic: “Integer Literals”.
5 p.40, 1st para.
6 p.40, 3rd para.
7 p.40, 3rd para, 2nd line.
8 p.40, 4th para, 3rd line.
9 p.42, topic: “The Scope and Lifetime of Variables”, 1st para, 3rd line.
10 p.43, 2nd para, 1st line.
11 p.43, 3rd para, 1st line.
12 p.45, topic: “Java’s Automatic Conversions”.
13 p.46, 1st para.
14 p.47, topic: “The Type Promotion Rules”, 1st para.

7

the result is greater than the highest range of that variable. In that case, the value will
become negative-to-positive or positive-to-negative. For example:

 byte b = 127; //Highest range of byte type
 b++; //Now, b = -128
 b += 3; //Now, b = -125
 b = -128; //Lowest range of byte type
 b--; //Now, b = 127
 b -= 3; //Now, b = 124

Therefore, the rule is as follows:

For range of type byte: -128 to 127

�� 3.13 If an expression contains only literals, then the type promotion rule will not be
applicable. But in that case, if the result is beyond the range of the type of variable in which
we are assigning the value, then casting is needed. For example:

b = 2 * 3 + 5; //OK. b = 11
 //b = 100 * 3; //Error. Result 300 is beyond the ra nge of byte
 b = (byte) (100 * 3); //OK. b = 44

��� 3.14 In multidimensional arrays, only the first dimension needs to be specified. The other
dimensions may or may not be specified and they can be different or the same.15

 3.15 The expression in a switch statement must be of type byte, short, int or char; each of
the values specified in the case statements must be of a type compatible with the
expression. Again, each case value must be a unique literal (i.e., it must be a constant, not a
variable). Duplicate case values are not allowed.16

Complete Concepts Program

/* CompleteConcept_Chapter3.java */

public class CompleteConcept_Chapter3 {
 public static void main(String[] args) {
 //Literal assignments - Points 3.3, 3.4, 3.5
 byte bt = 45;
 short s = 666;
 int i1 = 45543;
 long l1 = 214234;
 long l2 = 214234L;
 //long l3 = 3000000000; //Error. Integer number too large.
 float f = 123.12345678f;
 System.out.println(f); //Prints 123.12346 (up to 7 significant digits)
 //f = 1.1; //Error. See point 3.4
 double d1 = 1234567.123456789101118831415;
 d1 = 12.25D;
 char c1 = 'a' ;
 boolean flag = true ;

 //Octal & Hexadecimal representation - Points 3.1 & 3.2

15 p.51, last para.
16 p.81, 1st para.

+=, *=, ++

-=, *=, --

8

 bt = 0xA; //bt = 10
 bt = 012; //bt = 10
 f = 0xA; //f = 10.0
 //f = 0x2.5; //Error. Malformed floating point lite ral

 //Automatic type promotions
 byte b1 = 10, b2 = 5;

 //Using expression including variables - whether ov erflow or not
 byte b = (byte) (b1 * b2); //b = 50. See points 3.11 & 3.10

 //Using expression without variables - no overflow
 b = (5 / 2) * 4; //Now, b = 8. See point 3.13

 //Using expression without variables - overflow
 b = (byte) (100 * 3); //Now, b = 44. See points 3.13 & 3.10

 //Using arithmetic compound assignment operator - w hether overflow or not
 b *= 3; //Now, b = -124 [44 * 3 = 132 = (127 + 1) + 4 = -12 8 + 4 = -124].
 //See point 3.12

 //Using expression without variables -
 //with arithmetic compound assignment operator - wh ether overflow or not
 b += 100 * 3 ; //Now, b = -80 [-124 + 300 = (-124 + 124 + 127 + 1) + 48
 // = -128 + 48 = -80].
 //See point 3.12

 //Using expression including variables -
 //with arithmetic compound assignment operator - wh ether overflow or not
 b += b1 * 21; //Now, b = 10 [-80 + 210 = (-80 + 80 + 127 + 1) + 2
 // = -128 + 2 = -126]. See po int 3.12

 //char-to-others & others-to-char conversion – conc ept 3.4
 //Note: the erroneous assignments can be fixed by c asting.
 int a = 65;
 byte b3 = 65;
 char c = 'A' ;
 a = 'B' ; //OK. a = 66 (acceptable literal)
 c = 66; //OK. c = 'B' (acceptable literal)
 //c = 70000; //Error. 70000 is beyond the range of char (0 - 65536).
 a = c; //OK. a = 65.
 //b3 = c; //Error. c is beyond the range of byte.
 //c = b3; //Error. See footnote 1.

 //Array declaration
 //One-dimensional array
 int [] a1 = new int [5];
 int a2[] = {1, 2, 3, 4, 5};

 //Two-dimensional array with second dimension defin ed
 int [][] a3 = new int [2][3];
 for (int i = 0; i < a3.length; i++) {
 for (int j = 0; j < a3[i].length; j++) {
 System.out.print(a3[i][j] + " ");
 }
 System.out.println();
 }
 /* Output:
 * 0 0 0
 * 0 0 0
 */

 //Two-dimensional array with second dimension omitt ed
 int [][] a4 = new int [5][];

9

 for (int i = 0; i < a4.length; i++) {
 a4[i] = new int [i];
 for (int j = 0; j < a4[i].length; j++) {
 System.out.print(a4[i][j] + " ");
 }
 System.out.println();
 }
 /* Output:
 * 0
 * 0 0
 * 0 0 0
 * 0 0 0 0
 */

 //Variable scope & Lifetime
 int x = 10; //known to the rest of the code within main()
 if (x == 10) { //start new scope
 int y = 20; //known only to this block

 //x & y both are known here
 System.out.println("x & y: " + x + " " + y);
 x = y * 2;
 //int x = 4; //Error. x is already defined.
 }
 //y = 100; //Error. y is not known here.

 //x is still known here
 System.out.println("x is: " + x);
 }
}

Exercises

�� 3.1 Identify errors in the following program, correct t hem and write the output.
[Incourse-1, 2007. Marks: 4]

 1 class test {
 2 public static void main(String[] args) {
 3 byte a = 100;
 4 short b = a * 3;
 5 long l = 2000;
 6 float k = 284.24;
 7 byte c = k;
 8 int m = a;
 9 double d = b;
10
11 System.out.println(b);
12 System.out.println(c);
13 System.out.println(d);
14 }
15 }

Solution:

Error 1: Line 4: Possible loss of precision. Found: int, required: short.
Correction: short b = (short) (a * 3);

Error 2: Line 6: Possible loss of precision. Found: double, required: float.

 Correction: float k = 284.24f;

10

Error 3: Line 7: Possible loss of precision. Found: float, required: byte.
 Correction: byte c = (byte) k;

Output:
300
28
300.0

 100

 3.2 Write a program in Java that will print the followi ng output on the screen: [2005.
Marks: 3]

0 0 0 0 0
0 0 1 2 3
0 1 3 5 7
0 2 5 8 11

Solution:
public class Main {
 public static void main(String[] args) {
 int [][] a = {{0, 0, 0, 0, 0},
 {0, 0, 1, 2, 3},
 {0, 1, 3, 5, 7},
 {0, 2, 5, 8, 11}};

 for (int i = 0; i < a.length; i++) {
 for (int j = 0; j < a[i].length; j++) {
 System.out.print(a[i][j] + " ");
 }
 System.out.println();
 }

 }
}

 3.3 Write down the output of the following sequence of code:
for (int I = 0; I < 8; I++) {
 for (int J = 4 - (I % 4); J > 0; J--)
 System.out.print("");
 for (int J = 0; J < (I % 4) + 1; J++)
 System.out.print("X");
 System.out.println();
}

Solution:
X
XX
XXX
XXXX
X
XX
XXX
XXXX

 3.4 Consider the following Java program:

public class Main {
 public static void main(String[] args) {
 int i, j, k, a[];
 a = new int [5];
 for (k = 0; k < 5; k++) a[k] = 1;
 for (i = 1; i < 4; i++)
 for (j = i; j > 0; j--)
 a[j] += a[j-1];
 }
}

11

Generate the initial content of the array a (after the first loop) and then show the
contents of it after each iteration (for each value of i) of the loop containing i.

Modify the program so that it displays the contents of a after each iteration.

Solution:

Initial contents of a: [1, 1, 1, 1, 1]

Contents of a after each iteration:

i a[0] a[1] a[2] a[3] a[4]

1 1 2 1 1 1

2 1 3 3 1 1

3 1 4 6 4 1

Modified program:

public class Main {
 public static void main(String[] args) {
 int i, j, k, a[];
 a = new int [5];
 for (k = 0; k < 5; k++) a[k] = 1;
 for (i = 1; i < 4; i++) {
 for (j = i; j > 0; j--)
 a[j] += a[j-1];
 for (k = 0; k < 5; k++)
 System.out.print(a[k] + " ");
 System.out.println();
 }
 }
}

 3.5 Identify errors in the following program and state the reason. [Incourse-1, 2008.
Marks: 5]

 1 private class demo {
 2 public void main(String[] args) {
 3 int x = 10;
 4 byte b;
 5 if (x) {
 6 byte y = b * 3;
 7 float f = 3.567;
 8 System.out.println(x + " " + y);
 9 b = f;
10 }
11 System.out.println(x + " " + y);
12 }
13 }

Solution:

1. Line 1: Class cannot have the private access quantifier.
2. Line 5: Found int, required boolean.
3. Line 6: b is not initialized. Again, b * 3 results to an integer value, which cannot be

assigned to a byte type without explicit type casting.
4. Line 7: Found double, required float.
5. Line 9: Found fload, required byte.
6. Line 11: Variable ‘y’ is out of scope.

Theories

 4.1 What is sign extension

In Java, when a value is shifted right, the top (leftmost) bits exposed by the right shift are
filled with the previous contents of the top bit. This is called

It is used to preserve the sign of negative numbers when shifting them right.

 4.2 State the operation of logical short circuit operator in Java.
Marks: 1.5]

When short-circuit logical operators (
right side expression is not evaluated.

Concepts

 4.1

 4.2 Operator Precedence

Arithmetic

Operators

Unary

Operators

+ - * /
%

Binary

Operators

++

12

Chapter 4

Operators

sign extension in Java and why is it used?

when a value is shifted right, the top (leftmost) bits exposed by the right shift are
filled with the previous contents of the top bit. This is called sign extens

It is used to preserve the sign of negative numbers when shifting them right.

State the operation of logical short circuit operator in Java.

circuit logical operators (&&, ||) are used, if the left
right side expression is not evaluated.

recedence Chart:

Highest
() [] .
++ -- ~ !
* / %
+ –
>> >>> <<
> >= < <=
== !=
&
^
|
&&
||
?:
= op=
Lowest

Operators

Arithmetic

Operators

Binary

Operators

++ --

Compound

Assignment

Operators

+= -= *=
/= %=

Bitwise

Operators

~ & |
^ << >>

>>> &=
|= ^=

<<= >>=
>>>=

== != <
> <= >=

when a value is shifted right, the top (leftmost) bits exposed by the right shift are
sign extension.

It is used to preserve the sign of negative numbers when shifting them right.

State the operation of logical short circuit operator in Java. [Incourse 1, 2008.

, if the left expression is false, the

Relational

Operators

== != <
> <= >=

Boolean

Logical

Operators

& | ^
&& || !

&= |=
^= ==
!= ?:

13

Points to be Remembered

 4.1 For each shift left, the high-order bit is shifted out (and lost), and a zero is brought in on
the right.17

 4.2 Due to Java’s automatic type promotion system, when a byte or short value is shifted
left, the result must be cast back to byte or short type to get the correct result.18

 4.3 Each left shifting has the effect of doubling the original value. So, it’s an efficient way
to multiply by 2. But if a 1 is shifted to the MSB19, then the value will become negative.20

 4.4 For each right shift, the low-order bit is shifted out (and lost), and on the left, a copy of
the previous bit is brought (i.e., if the previous bit on that position was 0, then a 0 is brought;
if there was 1, then a 1 is brought).21

 4.5 Each right shifting has the effect of dividing the original value by 2, and any remainder is
discarded.22

 4.6 When a value is unsigned shifted right, a 0 is brought in on the left, no matter what its
initial value was.23

 4.7 Java does not treat the boolean value false as equivalent to integer 0 or true as
equivalent to integer 1.24

 4.8 In case of short-circuit logical operators (&&, ||), if the left expression is false, the right
side expression is not evaluated. But in case of single-character logical operators, all the
expressions are evaluated.25

Exercises

��� 4.1 Write a single Java statement to find the largest value of three integer variables a, b
and c.

int largest = (a > b) ? ((a > c) ? a : c) : ((b > c) ? b : c);

 4.2 Write a single Java statement to find the smallest value of three integer variables a,
b and c.

int smallest = (a < b) ? ((a < c) ? a : c) : ((b < c) ? b : c);

�� 4.3 Figure out the output of the following program code and explain your answer.
[2002. Marks: 4]

 1 class E4_2 {
 2 public static void main(String[] args) {
 3 byte a = 112, b;
 4 int c = 8, d = 3;
 5 int i ;
 6 c %= d; d ^= c;
 7 b = (byte) (a << 2);
 8 System.out.println("a " + a);
 9 System.out.println("i " + i);
10 System.out.println("b " + b);

17 p.65, 3rd para, 3rd line.
18 p.65, 4th para. [Note: when casting, the lower 8 or 16 bit (for byte and short type respectively) will be taken and the rest of the
bits will be discarded.]
19 MSB – Most Significant Bit, i.e., the left-most bit of a number.
20 p.66, 2nd para.
21 p.67, 5th para, 1st line.
22 p.67, 4th para.
23 p.68, topic: “The Unsigned Right Shift”, 1st para.
24 p.71, from top.
25 p.73, 2nd para.

14

11 System.out.println("c " + c);
12 System.out.println("d " + d);
13 }
14 }

Solution:

The statement on line 9 will not compile as variable ‘i’ is not initialized. The output of
the other println() statements will be as follows:

a 112
b -64
c 2
d 1

Explanation:

1. The value of variable ‘a’ is unchanged. So, 112 is printed as its value.
2. In the statement c %= d; , the result of the operation (2) is assigned to ‘c’. So, 2 is

printed as its value in the 4th println() statement.
3. In the statement d ^= c; , the result of the operation [(3 ^ 2) = 1] is assigned to ‘d’.

So, 1 is printed as its value in the 5th println() statement.
4. In the statement b = (byte) (a << 2); , the result of 2-bits left shifting is of type

int. So, when it is casted into type byte, the lower 8 bits of the result (which is 1) is
assigned to ‘b’. However, in this case, the MSB of the byte value is 1, which means
that the value is negative. So, -64 is printed as its value in the 3rd println()
statement.26

26 See point 4.2 and the footnote on that point for details.

15

Chapter 6 (& 7)

Classes, Objects, Methods and Fields

Theories

 6.1 What is a class and what is an object?

A class is a collection of fields (data) and methods (that operate on those fields).

An object is an instance of a class.

 6.2 What are the characteristics of an object?

Three properties characterize objects:

1. Identity: the property of an object that distinguishes it from other objects.
2. State: describes the data stored in the object.
3. Behavior: describes the methods in the object's interface by which the object can be

used.

 6.3 “Class is a logical construct and an object has physical reality” – explain the
statement with example. [2005. Marks: 2]

A class defines the general characteristics and behavior of an object. Therefore, an object
is an instance of a class. Consider the following example:

class Box {
 int height ;
 int width ;
 Box(int h, int w) {
 height = h;
 width = w;
 }
}

class Main {
 public static void main(String[] args) {
 Box b1 = new Box(3, 2);
 Box b2 = new Box(5, 5);
 }
}

 In the above example, the Box class defines the general characteristics of boxes, and the
objects b1 and b2 are two specific instances of that class – which have physical realities.

 6.4 Describe the lifecycle of an object. [2002. Marks: 2]

An object is instantiated when the new statement is used. It is destroyed when the
method in which it was instantiated returns.

 6.5 Differentiate among instance variable, class variable and local variable. [2005.
Marks: 3]

Instance Variables (Non-Static Fields): An instance variable is any field declared
without the static modifier. It is called such because its value is unique to each instance of a
class (or object).

Class Variables (Static Fields): A class variable is any field declared with the static
modifier; this tells the compiler that there is exactly one copy of this variable in existence,
regardless of how many times the class has been instantiated.

Local Variables: A local variable is a variable declared inside a method.

16

 6.6 What type of variable should be used to store data that is important throughout an
object’s lifespan? [2004. Marks: 1]

Final variables (i.e., constants) should be used to store data that is important throughout
an object’s lifespan.

 6.7 Is it possible to declare a class using only variables or using only methods? Justify
your answer. [2003. Marks: 3]

Yes, it is possible to declare a class using only variables or using only methods.

Following is an example of such cases:

class Box {
 int height;
 int width;
}

class Print {
 void show(Box x) {
 System.out.println("Height: " + x.height
 + " \nWidth: " + x.width);
 }
}

public class test {
 public static void main(String[] args) {
 Box b = new Box();
 b.height = 5;
 b.width = 2;
 new Print().show(b);
 }
}

In the above example, the Box class has only variables, whereas the Print class has only
methods.

 6.8 Suppose Box is a class. Now draw the memory allocation of the following three
statements: [2005. Marks: 3]

Box b1;
b1 = new Box();
Box b2 = b1;

� 6.9 What does a constructor do? What are the syntactic differences between a
constructor and a method? [2006. Marks: 2]

A constructor initializes an object immediately upon creation.

The syntactic difference between a constructor and a method is that a constructor has no
return type (not even void), whereas a method must have a return type or void if it does not
return anything.

�� 6.10 How is main() method declared in Java? Discuss briefly the meaning of each part of
the main() method declaration. [2005. Marks: 3]

In Java, main() method is declared as follows:

b1
Box object

Instance variable n

Instance variable 2

Instance variable 1

…………………... b2

17

public static void main(String[] args)

Meaning of each part of the method declaration is as follows:

1. public: Specifies that this method can be called from any class.
2. static: Specifies that this method can be called without instantiating an object of the

main class.
3. void: Specifies that this method returns nothing.
4. main: This is the name of the method.
5. String[] args: Specifies that this method takes an array of String as its parameter.

This array contains the command-line arguments.

�� 6.11 Discuss briefly the meaning of each part of the following Java statement:
 System.out.println(). [2007. Marks: 2]

1. System: A final class which provides many useful system-related functionalities –
for example: standard input, output and error output streams; access to externally
defined properties and environment variables; a means of loading files and libraries
etc.

2. out: A static final object of the PrintStream class which sends output to various
output devices.

3. println: A method that outputs a line-termination character.

��� 6.12 State the advantage of this keyword using suitable example. [2007, Marks: 2]

OR, What problem will arise in the following constructor? How can you solve it?
[2005. Marks: 4]

class Student {
 int roll ;
 int marks ;
 Student(int roll, int marks) {……………}
}

The following statements will have to be put inside the constructor:

roll = roll;
marks = marks;

In this case, the local variables roll and marks will be assigned the values they already
contain. The fields roll and marks will not be assigned the expected value.

To solve this problem, we can use the this keyword as follows:

this .roll = roll;
this .marks = marks;

The this keyword refers to the fields of the current object and thus assigns the desired
values to the fields instead of the local variables.

� 6.13 Explain why you must be careful when passing objects to a method or returning
objects from a method. [2002. Marks: 3]

Objects are passed to a method using call-by-reference. Thus, actually the reference of
the object is passed to the method. Consequently, if any change in the object is made, the
change reflects in the original object.

� 6.14 What is access specifier? Distinguish among them with examples. [2002. Marks: 3]

An access specifier is a keyword which specifies how a class member can be accessed.

There are four types of access specifiers:

1. Anything declared public can be accessed from anywhere.
2. Anything declared private cannot be seen outside of its class.
3. Anything declared as default access (package-private) can be accessed from

anywhere in the same package.

18

4. Anything declared as protected can be accessed from anywhere in the same
package, plus from only its subclasses outside the package.

��� 6.15 Consider the following piece of code:
Employee E1 = new Employee("Karim" , 5001);
Employee E2 = new Employee(E1);

What are the values of the expressions E1.equals(E2) and E1 == E2? Why? [2004,
2005. Marks: 3]

The value of E1.equals(E2) is true, whereas the value of E1 == E2 is false.

This is because when two objects are compared using the == operator, only their
references are compared; and as they are two different objects, their references are different.
So, the latter expression produces false. On the other hand, the equals() method compares
the fields within two objects; and as they are the same, the result of the first expression is
true.

 6.16 Why are Java’s primitive data types not implemented as objects?

Java’s primitive data types are not implemented as objects to increase efficiency. Objects
have many features and attributes that require Java to treat them differently than it treats
primitive types. By not applying the same overhead to the primitive types that applies to
objects, Java can implement the primitive types more efficiently.

 6.17 What is a variable-arity method?

OR, What is a varargs method?

A method that takes a variable number of arguments is called a variable-arity method or
a varargs method. For example:

void aMethod(int ... x) {}

 6.18 Why sometimes a variable is declared as final? [2005. Marks: 2]

Sometimes a variable is declared as final to make it unchangeable, i.e., to make it a
constant.

� 6.19 What is “garbage” and what is the function of the “garbage collector”? [2005.
Marks: 2]

OR, How does Java manage free memory? [2002. Marks: 2]

When an object is no longer used, it is called “garbage”.

The function of the “garbage collector” is to determine objects which are no longer used
(by finding out if no reference to an object exists) and reclaim the memory occupied by the
object.

� 6.20 What is the use of the finalize() method? What is its disadvantage?

OR, State the operation of the finalize() method. [2007, Marks: 1. Incourse-1, 2008,
Marks: 1.5]

By using the finalize() method, some specific actions can be defined that will occur when
the memory space occupied by an object is just about to be reclaimed by the garbage
collector.

finalize() is called just prior to garbage collection. It is not called when an object goes
out-of-scope, for example. This means that it cannot be known – or even if – finalize() will
be executed. So, this method cannot be relied upon for normal program execution.

 6.21 How can you create an exact copy of an existing object? [2007, Marks: 2]

An exact copy of an existing object can be created in two ways:

1. By providing a constructor which will take an object of the same class as parameter

19

and initialize all the fields to corresponding values of the fields in that object.
2. By implementing the Cloneable interface and overriding the clone() method of the

Object class.

�� 6.22 Why should you use inner class? [2007. Marks: 2]

If there are some methods which should be in a separate class, but, that class is most
likely to be used by only single another class, then the former class can be used as an inner
class of the latter class.

Also, inner classes can be used as anonymous classes for greater flexibility.

 6.23 What are static blocks? What are their advantages?

Static blocks are blocks defined within the body of a class using the static keyword but
which are not inside any other blocks. For example,

public class Test {
 static int foo;

 static {
 foo = 998877;
 }
}

The primary use of static initializer blocks is to do various bits of initialization that may
not be appropriate inside a constructor.

Points to be Remembered

� 6.1 When one object reference variable is assigned to another object reference variable, a
copy of the object is not being created, only a copy of the reference is being made.27

� 6.2 Constructors have no return types, not even void. This is because the implicit return type
of a class’ constructor is the class type itself.28

� 6.3 The default constructor automatically initializes all instance variables to their default
values. The default initialization values are given below:

Instance Variable Type Default Initialization Value

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0

char '\u0000' (null character)

boolean false

String "" (Note that there is no space between the quotes)

Any Object null
29

27 p.111, topic: “Assigning Object Reference Variables”.
28 p.117, topic: “Constructors”, 2nd para, 4th line.
29 Note that there is an important difference between null and null character. null is a Java keyword which means that a variable is
not initialized, whereas null character is the first Unicode or ASCII character.

20

��� 6.4 All fields (both static and non-static) are always initialized (either automatically by
default values or by user-given values) upon an object initialization. But all local variables
must be initialized by the user.

��� 6.5 Overloaded methods must differ in the type and/or number of their parameters.30 Return
types do not play a role in overload resolution.31 In some cases, Java’s automatic type
conversions can play a role in overload resolution.32

 6.6 When a primitive type is passed to a method, it is done by use of call-by-value. Objects
are implicitly passed by use of call-by-reference.33

��� 6.7 Methods declared as static have several restrictions:

1. They can only call other static methods.
2. They must only access static data.
3. They cannot refer to this or super in any way.34

��� 6.8 An inner class has access to all of the members of its enclosing class (whether they are
public, private, protected or package-default). To access any member of inner class (whether
they are public, protected or package-default – but not private), the outer class must
instantiate an object of the inner class. 35

 6.9 In a varargs method, the varargs parameter must be last.36 For example:

int doIt(int a, boolean b, int ... vals) {}
//int doIt(int a, int ... vals, boolean b) {} //Err or!

 6.10 There must be only one varargs parameter.37 For example:

int doIt(int a, int ... vals) {}
//int doIt(int a, int ... vals, boolean ... x) {} / /Error!

 6.11 Zero or more arguments may be passed to a varargs parameter.38 For example:

int doIt(int ... vals) {}

We can call the above method as doIt() or doIt(2) or doIt(2, 3, ..., n) etc.

 6.12 In contrast to constructors, static initialize blocks aren't inherited and are only executed
once – when the class is loaded and initialized by the JRE.

Complete Concepts Program – Class, Objects and Methods

/* CompleteConcept_Chapter6_1.java

 In this program, we'll learn the following:

 1. How to create objects with no parameterized c onstructor and two
 parameterized constructors.
 2. How to access methods of a class by using an object of that class.
 3. How to access private data of a class by usin g a public method of
 that class, hence learning how to protect dat a from unauthorized
 access.
 4. How to pass an object as a parameter and henc e creating a duplicate
 copy of that object.
 5. How to return objects from a method.

30 p.125, topic: “Overloading Methods”, 2nd para, 3rd line.
31 p.126, 1st para, last line.
32 p.126, 2nd para, 3rd line.
33 p.134, the “Remember” para.
34 p.141, topic: “Understanding Static”, 3rd para.
35 p.146, 3rd para, 1st line.
36 p.153, 4th para.
37 p.153, 6th para.
38 p.155, topic: “Varargs and Ambiguity”.

21

 6. Whether we can access static and non-static d ata and methods from a
 static method [main()].
 7. Whether we can change the value of a final va riable, which is
 essentially a constant.

 */

class Box {
 private float height;
 private float width;

 Box() {
 height = 0;
 width = 0;
 }

 Box(float h, float w) {
 height = h;
 width = w;
 }

 Box(Box obj) {
 height = obj.height; //Note why we're allowed to access private data...
 width = obj.width;
 }

 public float getArea() {
 return (float) height * width; //Note the type casting...
 }

 public Box inc(float val) {
 return new Box(height + val, width + val);
 /* The above statement works similar to the followi ng lines:
 * Box temp = new Box(height + val, width + val);
 * return temp;
 */
 }

 public void setDimensions(float h, float w) {
 height = h;
 width = w;
 }

 public float getHeight() {
 return height;
 }

 public float getWidth() {
 return width;
 }
}

class CompleteConcept_Chapter6_1 {
 static boolean can_Be_Accessed_From_Main = true ;
 boolean _can_Be_Accessed_From_Main = false ;
 final static boolean CAN_BE_CHANGED = false ; //Constant

 static void canBeAccessedFromMain() {
 System.out.println("Static method can be accessed from main.");
 }

 void cannotBeAccessedFromMain() {
 System.out.println("Non-static method cannot be accessed from main.");
 }

22

 public static void main(String args[]) {
 Box b1 = new Box(); //Test Box() Constructor
 System.out.println(b1.getArea());

 b1.setDimensions(5.2f, 5.9f); //Test setDimensions() Method
 System.out.println(b1.getHeight()); //Test getHeight() Method
 System.out.println(b1.getWidth()); //Test getWidth() Method
 System.out.println(b1.getArea()); //Test getArea() Method
 //System.out.println(b1.height); //Cannot access private data

 Box b2 = new Box(5.2f, 5.9f); //Test Box(float h, float w)
 System.out.println(b2.getArea());

 Box b3 = new Box(b2); //Test Box(Box obj) Constructor
 System.out.println(b3.getArea());

 Box b4 = new Box(b3.inc(6.8f)); //Test inc(float val) Method
 System.out.println(b4.getArea());

 //Test static & non-static variable access from mai n():
 System.out.println(can_Be_Accessed_From_Mai n);
 //System.out.println(_can_Be_Accessed_From_Main);

 //Test static & non-static method access from main():
 canBeAccessedFromMain();
 //cannotBeAccessedFromMain();

 //Test whether final variable (i.e., a constant) ca n be changed:
 //CAN_BE_CHANGED = true;
 }
}

/*Program Output:

 0.0 //System.out.println(b1.getArea());
 5.2 //System.out.println(b1.getHeight()) ;
 5.9 //System.out.println(b1.getWidth());
 30.68 //System.out.println(b1.getArea());
 30.68 //System.out.println(b2.getArea());
 30.68 //System.out.println(b3.getArea());
 152.40001 //System.out.println(b4.getArea());
 true //System.out.println(can_Be_Accessed _From_Main);
 Static method can be accessed from main. //ca nBeAccessedFromMain();

*/

Complete Concepts Program – Inner Classes

class Outer {
 public int outer_pub;
 private int outer_pri;
 protected int outer_pro;
 int outer_def; //Default access
 int general_var;

 void outerMethod() {
 //Can't access inner fields or methods without obje cts
 Inner in = new Inner();
 //Can access inner fields or methods whatever
 //access specifiers they may have
 in.inner_pub = 5;
 in.inner_pri = 5;
 in.inner_pro = 5;
 in.inner_def = 5;

23

 in.general_var = 5;
 in.innerMethod();
 }

 class Inner {
 public int inner_pub;
 private int inner_pri;
 protected int inner_pro;
 int inner_def; //Default access
 int general_var; //Hides the general_var in Outer class

 void innerMethod() {
 //Can access outer variables whatever
 //access specifiers they may have
 outer_pub = 5;
 outer_pri = 5;
 outer_pro = 5;
 outer_def = 5;
 general_var = 5; //This is the field in Inner class
 outerMethod(); //Can call outer method
 }
 }

}

public class CompleteConcept_Chapter6_2 {
 public static void main(String[] args) {
 //Instantiating an inner class object
 Outer a = new Outer();
 Outer.Inner in = a. new Inner();

 //Can access all the fields and methods of inner ex cept private
 in.innerMethod();
 in.inner_pub = 5;
 in.inner_pro = 5;
 in.inner_def = 5;
 in.general_var = 5;
 }
}

Exercises

��� 6.1 The following complete program prints four lines when executed. Show the four
lines that are printed in the order in which they are printed. [2006. Marks: 3]

public class ArrayTest {
 public static void main(String[] args) {
 int [] test = new int [2];
 test[0] = test[1] = 5;
 System.out.println(test[0] + "," + test[1]);
 fiddle(test, test[1]);
 System.out.println(test[0] + "," + test[1]);
 }
 static void fiddle(int [] test, int element) {
 test[0] = 10;
 test[1] = 11;
 element = 12;
 System.out.println(test[0] + "," + test[1] + "," + element);
 test = new int [2];
 test[0] = 20;
 test[1] = 21;
 System.out.println(test[0] + "," + test[1]);
 }
}

24

Solution:
5,5
10,11,12
20,21
10,11

Explanation:

See point 6.6

��

6.2 Design a class named Student that has two private data – student id and score. The
class should contain a parameterized constructor to initialize its data member and one
method to display the information. Now write a Java program that will use an array of
Student objects to represent information about 3 students. Your program should take
input from the keyboard and display the information of the 3 students. [Incourse-1,
2007. Marks: 3+3=6]

Solution:
import java.util.Scanner;

class Student {
 private int student_ID;
 private int score;

 Student(int std_ID, int s) {
 student_ID = std_ID;
 score = s;
 }

 void display() {
 System.out.println("ID: " + student_ID + ", score: " + score);
 }
}

public class Main {
 public static void main(String[] args) {
 Student students[] = new Student[3];

 //Input Student information
 Scanner in = new Scanner(System.in);
 int stdID, stdScore;
 for (int i = 0; i < 3; i++) {
 System.out.print("Enter student ID: ");
 stdID = in.nextInt();
 System.out.print("Enter score: ");
 stdScore = in.nextInt();
 students[i] = new Student(stdID, stdScore);
 }
 //Display student information
 for (int i = 0; i < 3; i++) {
 students[i].display();
 }
 }
}

��� 6.3 Identify errors in the following program and state the reasons: [Incourse-1, 2007.
Marks: 5]

 1 class QW1 {
 2 private int a;
 3 private int b;
 4 public QW1(int i, int j) {a = i; b = j;}
 5 public QW1(int i) {a = i; b = i;}
 6 public void show() {
 7 System.out.println(a);
 8 System.out.println(b);
 9 }

25

10
11 public static void main() {
12 final int ARRAY_SIZE;
13 int a[] = new int [ARRAY_SIZE];
14 int b[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
15
16 for (int i = 0; x <= b.length; i++) {
17 System.out.println(b[i]);
18 }
19 b += 10;
20 show();
21 }
22 }

Solution:

� Line 11:
main() method has no parameters.
OR,
At runtime, the following exception will be generated:

Exception in thread "main" java.lang.NoSuchMethodEr ror: main

� Line 13:
Variable ARRAY_SIZE might not have been initialized.

� Line 16:
Cannot find symbol. Symbol: x , Class: QW1.

� Line 17:
At runtime, the following exception will be generated:
Exception in thread "main"java.lang.ArrayIndexOutOf BoundsException:10

� Line 19:
Operator + cannot be applied to int[] , int
OR,
Operator + cannot be applied to array

� Line 20:
 Non-static method show() cannot be referenced from a static context.

� 6.4 Identify errors and state the reasons: [Incourse-3, 2007. Marks: 5]
 1 class test {
 2 int x = 25;
 3 private int y = 45;
 4
 5 class in {
 6 private int p = 90;
 7 void set_p() {
 8 p = 25;
 9 set_val(100, 200);
10 }
11 }
12
13 private void set_val(int a, int b) {
14 x = a;
15 y = b;
16 p = 34;
17 }
18
19 void temp() {
20 in t = new in();
21 t.set_p();
22 t.p = 23;
23 }
24 }
25
26 class test_in {
27 public static void main(String args[]) {
28 test ob = new test();

26

29 temp();
30 in ob1 = new in();
31 in.set_p();
32 }
33 }

Solution:

Error 1: Line 16: Cannot find symbol. Symbol: variable p. Location: class test .

Error 2: Line 29: Cannot find symbol. Symbol: method temp() . Location: class
test_in .

Error 3: Line 30: Class in is an inner class. Cannot be instantiated outside the outer
class test .

OR, Cannot find symbol. Symbol: class in . Location: class test_in .

 6.5 Write a class definition for the following scenario. You have to write a class called
MyFraction which works on fractions of the form a/b where a represents the
numerator and b represents the denominator. Both a and b are integers (i.e. if a = 1
and b = 2, then the fraction will be 1/2). Your class should perform the following
operations:

i. Create two constructors – (1) with no parameters that set a = 0 and b = 1;
and (2) with 2 integer parameters that sets both a and b.

ii. Write an instance method for addition which returns the resultant object.
[int: a/b + c/d = (ad + bc)/bd]

iii. Write a static method for multiplication which returns the resultant object.
[Hint a/b * c/d = ac/bd]

iv. Write a static main() that allocates two Fractions, 1/2 and 3/4 and stores
their sum in a third variable. [2005. Marks: 5]

Solution:
class MyFraction {
 int a, b;

 MyFraction() {
 a = 0;
 b = 1;
 }

 MyFraction(int x, int y) {
 a = x;
 b = y;
 }

 MyFraction addition(MyFraction x) {
 return new MyFraction((a * x.b + b * x.a), (b * x.b));
 }

 static MyFraction multiplication(MyFraction x, MyFraction y) {
 return new MyFraction((x.a * y.a), (x.b * y.b));
 }
}

public class E6_5 {
 public static void main(String[] args) {
 MyFraction f1 = new MyFraction(1, 2);
 MyFraction f2 = new MyFraction(3, 4);
 MyFraction f3 = f2.addition(f1);
 }
}

27

��� 6.6 Consider the following Java code. Generate the output and state the reason of your
result. [2007. Marks: 3]

 1 class QW1 {
 2 String str;
 3 public int num;
 4 QW1(String s, int a) {
 5 str = s;
 6 num = a;
 7 }
 8
 9 public String toString() {
10 return str + " " + num;
11 }
12 }
13
14 class test {
15 public static void main(String[] args) {
16 QW1 ob = new QW1("Hello" , 123);
17 QW1 ob1 = new QW1("World" , 345);
18 ob1 = ob;
19 ob.num = 345;
20 System.out.println(ob1);
21 }
22 }

Solution:
Hello 345

Explanation:

1. At line 18, after the statement executes, both ‘ob’ and ‘ob1’ will be pointing to the
object ‘ob’.

2. At line 19, the change in ob.num will also be reflected in ob1.num.
3. At line 20, the passing of ob1 as argument to println() causes to call the toString()

method of ob1, which then prints the above output.

�� 6.7 Perform necessary correction on the following Java program and generate the
output: [2007. Marks: 3]

 1 class QW {
 2 public int a;
 3 private int b;
 4 public void show() {
 5 System.out.println(a);
 6 System.out.println(b);
 7 }
 8 static {
 9 a = 12;
10 b = 13;
11 }
12 public static void test() {
13 show();
14 }
15 }
16
17 public class temp {
18 public static void main(String[] args) {
19 QW.Show();
20 QW ob = new QW();
21 QW ob1 = new QW();
22 ob.a = 50;
23 ob.show();
24 ob1.test();
25 }
26 }

28

Corrections:

1. The fields ‘a’, ‘b’ and the method show() should be static.
2. Line 19: QW.Show() should be QW.show(), i.e., the method name show() should be

in lowercase.

Output:
12
13
50
13
50
13

� 6.8 Create a class named IntegerSet. This class should contain two sets of integer
numbers that belong to the range 0 to 100. Each set is represented using an array of
boolean. Array element a[i] is true if integer i is in the set. Your class should perform
the following operations:

i. Create a no-argument constructor to initialize both of the set as an empty
set (all the elements are set to false).

ii. Create a constructor to take input into both of the sets.
iii. Write a method unionOfSets to create a third set which is the union of the

existing two sets. (An element of the third set is true if that element is true in
either or both of the existing sets).

iv. Write a static method insertElement to insert a new integer k into the first
set (by setting a[k] to true).

v. Write a method printSet to print the elements of both the sets.

Write a Java program to create an object of type IntegerSet and perform all the
operations mentioned in the class on that object. [2007. Marks: 6]

Solution:
class IntegerSet {
 static boolean [] a, b;
 IntegerSet() {
 a = new boolean [100];
 b = new boolean [100];
 }
 IntegerSet(boolean [] x, boolean [] y) {
 a = x;
 b = y;
 }
 boolean [] unionOfSets() {
 boolean [] c = new boolean [100];
 for (int i = 0; i < c.length; i++) {
 if (a[i] == true || b[i] == true) {
 c[i] = true ;
 }
 }
 return c;
 }
 static void insertElement(int k) {
 a[k] = true ;
 }
}

public class Test {
 public static void main(String[] args) {
 IntegerSet obj = new IntegerSet();
 boolean [] z = obj.unionOfSets();
 IntegerSet.insertElement(38);
 }
}

29

Chapter 8

Inheritance, Abstract Classes and Interface

Theories

� 8.1 What is Inheritance?

Inheritance is a mechanism which allows a class (called the base or superclass) to be
extended to make a new class (called the derived class or subclass), while maintaining the
integrity of the base class.

��� 8.2 Why should you use the keyword super in your java program? Explain with
example. [Incourse-2, 2007, Marks: 3. 2007, Marks: 3]

OR, State use of super keyword using example. [Incourse-2, 2008. Marks: 2.5]

There are two cases where we should use the keyword super in a java program:

1. To call the constructor of the superclass.
2. To access the non-private fields and methods of the superclass.

For example, consider the following code segments:

class A {
 int a;

 A(int x) {
 a = x;
 }

 void display() {
 System.out.println(a);
 }
}

class B extends A{
 int b;

 B(int x, int y) {
 super (x);
 b = y;
 }

 void display() {
 super .display();
 System.out.println(b);
 }
}

In the above example, insides class B , super(x) is used to call class A ’s
constructor, and super.display() is used to access class A ’s display() method.

��� 8.3 What is the difference between method overriding and method overloading? Explain
with example. [2003, 2005, 2007. Marks: 4/3/3]

Mention the rules associated with them. [2007. Marks: 2]

In a class hierarchy, when a method in a subclass has the same name and type signature
as a method in its superclass, then the method in the subclass is said to override the method
in the superclass, and this process is called method overriding.

On the other hand, when multiple methods have the same name, but different type
signatures, then the methods are said to be overloaded, and this process is called method
overloading.

30

Here is an example:

class A {
 int a;

 void display() {
 System.out.println(a);
 }
}

class B extends A{
 int b;

 void setVal(int x) {
 b = x;
 }

 void setVal(int x, int y) {
 super .a = x;
 b = y;
 }

 void display() {
 System.out.println(b);
 }
}

39In the above example, the display() method in class B has the same name and

type signature as the display() method in class A . So, the display() method in
class B overrides the display() method of class B . On the contrary, the
setVal() methods in class B have the same name, but different signatures. So, they are
overloaded.

Again, overloading defines a similar operation in different ways for different data,
whereas overriding defines a similar operation in different ways for different object types.40

Rules associated with method overloading:

1. Overloaded methods must differ in the type and/or number of their parameters.
2. Return types do not play a role in overload resolution.

Rule associated with method overriding:

Overridden methods must match in the type and number of their parameters as well as
their return types.

� 8.4 What is the advantage of method overriding?

Method overriding allows Java to support run-tme polymorphism. This run-time
polymorphism allows a general class to specify methods that will be common to all of its
derivatives, while allowing subclasses to define the specific implementation of some or all of
those methods. Overridden methods are another way that Java implements the “one interface,
multiple methods” aspect of polymorphism.

�� 8.5 “A superclass variable can refer a subclass object”, do you agree? Justify your
answer. [2003. Marks: 3]

Yes, a superclass variable can refer a subclass object. The following program
demonstrates this:

39 Note that I haven’t declared any constructors in the code segment. In the exam, you need to save as much time as possible.
Declaring constructors is irrelevant to the question, and the program is perfectly valid without constructors. So, you must omit
irrelevant codes to save time at exam, provided that the irrelevant code is not vital for the program to be compiled successfully.
40 Include this difference only if the question has 4 marks, or, if the question doesn’t want any example.

31

class A {
 int x;

 void displayA() {
 System.out.println(x);
 }
}

class B extends A{
 int y;

 void displayB() {
 System.out.println(y);
 }
}

public class TestClass{
 public static void main(String[] args){
 B b = new B();
 A a = b;
 a.displayA();
 }
}

In the above program, inside the main method, ‘a’ is a superclass reference which refers
to its subclass object ‘b’. However, only those members of class B can be accessed
through ‘a’ that are defined by class A . So, while we can access the field ‘x ’ and the
method displayA() , we cannot access the field ‘y ’ and the method displayB()
through the superclass reference variable ‘a’.

 8.6 Discuss why casting a superclass reference to a subclass reference is potentially
dangerous. [2005. Marks: 3]

A superclass reference knows nothing about what members the subclass has added. But
the subclass knows what it inherited as well as what it added. So, when a subclass will refer
to a superclass reference (through casting), it will know all the added members of its own
class as well as those of the superclass. Therefore, it is likely that the subclass reference may
try to access its own added members. And when it tries so, it will not be able to find them in
the object referred to by the superclass. Thus, an error will occur. Hence, casting a superclass
reference to a subclass reference is potentially dangerous.

� 8.7 Why should you use abstract class in your program? [Incourse-1, 2007. Marks: 2]

Sometimes there may be a need to create a superclass that only defines a generalized
form that will be shared by all of its subclasses, leaving it to each subclass to fill in the
details. Such a class determines the nature of the methods that the subclasses must
implement. Abstract class provides a way to solve this type of situation.

 8.8 What is interface? What are the possible contents of an interface? Explain. [2003.
Marks: 1+2]

An interface defines a protocol of behavior that can be implemented by any class.

The possible contents of an interface are:

1. Method declarations without bodies.
2. Initialized variables which are implicitly static and final.

 8.9 State the advantages of using interface. [Incourse-2, 2007. Marks: 2]

1. Capturing similarities among unrelated classes without artificially forcing a class
relationship.

2. Revealing an object's programming interface without revealing its class.
3. Helps achieving multiple inheritance.

32

�� 8.10 State the advantage of an interface over an abstract class. [2007, Marks: 2. Incourse-
2, 2008. Marks: 2.5]

The advantage of interface over abstract class is that several interfaces can be
implemented by a class, whereas only one abstract class can be inherited by a class.

� 8.11 What are the differences between abstract class and interface?

Abstract Class Interface

A class may extend only one abstract class. A class may implement several interfaces.

Can extend another abstract or non-abstract
class.

Can extend only another interface.

Can have methods with bodies defined as
well as methods without bodies.

Cannot have any method with a defined
body.

Can contain both instance variables and
constants.

Can contain only static final variables (i.e.,
static constants).

� 8.12 What are the differences between a class and an interface? [2002. Marks: 3; 2005.

Marks: 2]

Class Interface

Defines what states41 and behaviors an
object can have.

Defines what methods a class can have.

Can extend another class or implement
interfaces.

Can extend only another interface.

Can have methods with bodies defined as
well as methods without bodies (i.e.,
abstract methods).

Cannot have any method with a defined
body.

Can contain both instance variables and
constants.

Can have only static final variables(i.e.,
constants).

Objects of a class can be instantiated. Objects of an interface cannot be
instantiated.

� 8.13 Is it possible to partially implement an interface? Justify your answer with example.

[2003. Marks: 3]

Yes, it is possible to partially implement an interface by declaring the implementing class
as abstract. For example:

interface Characteristics {
 boolean hasArea();
 boolean hasVolume();
 boolean is2D();
 boolean is3D();
}

abstract class Figure implements Characteristics{
 int dim1, dim2;
 public 42 boolean is2D() {
 return true ;
 }
}

41 i.e., attributes or properties.
42 Don’t forget to include the modifier ‘public’, ignoring it would result in a compile-error. See point 8.15.

33

In the above example, class Figure partially implemented the interface Characteristics by
implementing only one method from it. However, class Figure must be declared as abstract
and any class that will inherit Figure must implement the remaining methods declared in the
interface ‘Characteristics’.

��� 8.14 How multiple inheritance is achieved in Java? [2005. Marks: 1]

OR, Write a Java program to implement multiple inheritance. [Incourse-2, 2007.
Marks: 4]

Multiple inheritance can be achieved in Java by allowing a class to inherit from one other
class and an unlimited number of interfaces.

Below is a program demonstrating multiple inheritance, which inherits a class and an
interface:

interface Engine{
 void setHorsePower(int hrsPwr);
 int getHorsePower();
 void setMaker(String mk);
 String getMaker();
}

class Body{
 private String color;

 void setColor(String clr) {
 color = clr;
 }

 String getColor() {
 return color;
 }
}

class Car extends Body implements Engine {
 int hp;
 String maker;

 Car(int hrsPwr, String clr, String mkr) {
 hp = hrsPwr;
 setColor(clr);
 maker = mkr;
 }

 public void setHorsePower(int hrsPwr){
 hp = hrsPwr;
 }
 public int getHorsePower(){
 return hp;
 }
 public void setMaker(String mk){
 maker = mk;
 }
 public String getMaker(){
 return maker;
 }
}

public class Multi_Inherit {
 public static void main(String[] args) {
 Car toyota_Corolla = new Car(100, "White" , "Toyota");
 Car pajero = new Car(800, "Black" , "Mitsubishi");
 }
}

34

� 8.15 X is a subclass of Y. Does the last two assignments below produce a compile-time
error? [2006. Marks: 2]
 X x = new X();
 Y y = new Y();
 y = x;
 x = y;

The assignment y = x does not produce any compile-time error as subclass object can be
assigned to superclass reference. But the assignment x = y produces a compile-time error.

 8.16 What is final variable and final method? Write down the reasons to use these. [2006.
Marks: 3]

A final variable is a variable whose value cannot be changed. It is used as a constant.

A final method is a method which cannot be overridden. It is used to prevent overriding
of a method.

 8.17 What is early binding, late binding and dynamic binding (or dynamic method
dispatch)?

Normally, Java resolves calls to methods dynamically, at run time. This is called late
binding. However, since final methods cannot be overridden, a call to one can be resolved at
compile time. This is called early binding.

Dynamic binding or dynamic method dispatch is the mechanism by which a call to an
overridden method is resolved at run time, rather than compile time.

Points to be Remembered – Inheritance

 8.1 ���� class ���� ��	
��	
��	
��	
 ��� class-��� inherit ���� �����।43
 8.2 Constructor call ��� ������ superclass ���� ���	�� subclass ����।44
 8.3 �	� Superclass-�� constructor �� ���� ���� constructor parameterless ��, �����

Subclass-�� constructor-� super() call �� ���� !���। ���"�� Java 	��#� ��
� call

����। 	�$ �	� superclass-�� constructor parameterized ��, ����� Java 	��# 	��# ��
�
call ���� �� ��% ��&���&���&���&� �� �'�(��	� super(parameter-list) 	��� call ���� ���।45

 8.4 Subclass-�� constructor-� super() call ���� �� ��&� constructor-��)��)��)��)�� statement
��� ���।46

 8.5 Subclass ���� super �*- ��+� ,��� 	-� .����	-� .����	-� .����	-� .���� superclass-�� method �� variable access ���
����।47

 8.6 Superclass reference variable ,��� subclass object-�� refer ��� ���। ��� ���"�� / variable

,��� subclass-�� �� ��� variable �� method-� access ��� ���� ��0��� superclass-� define

��� 1�2। �� 	���*�	
 �3� ��, ����ৎ subclass reference variable ,��� superclass-��
object-�� refer ��� ��� ��।48

 8.7 Overridden method call-�� �"��, ���� superclass variable �5� subclass-�� ���� object-
�� point ����, �5� subclass-�� overridden method-
�� call ���।49

43 p.159, 1

st
 para.

44 p.170, topic: When Constructors are Called, 1
st
 para, 3

rd
 line.

45 P.170, 2nd para, 3rd line.
46 p.163, topic: Using super to Call Superclass Constructors, 3rd line.
47 p.163, 2

nd
 para, 1st line.

48 p.162.
49 p.174, the program.

35

 8.8 Overridden method-�� access modifier ��&� superclass-�� method-�� access privilege-
�� �6���� ���� �� ��	7 privilege �89 ��� ���। ����ৎ, superclass-�� method package

default ��� subclass-�� method package default �� public ��� ���, private ��� ��� ��।
���:���, superclass-�� method public ��� subclass-�� method public ��� ���, package

default �� private ��� ��� ��।

Points to be Remembered – Abstract Classes

 8.9 ���� class-� �;'��� ��	
 abstract method ������ / class-�� abstract 	����� declare ����
���।50

 8.10 Abstract class-�� ���� object declare ��� ��� ��, ��� ��
�� reference variable declare ���
���।51

 8.11 Abstract class-� abstract constructor �� abstract static method declare ��� ��� ��।52
 8.12 Abstract class-�� subclass-� / Abstract class-�� ������������ abstract method override ����

���।53 ��& subclass-	
 �	� 	��#� 1��� abstract ��� ����, ����� superclass-�� ���
abstract method override �� ���� !���।54

 8.13 ���� class-�� abstract ��% final .:� 	����� �5���� declare ��� ��� ��।55

Points to be Remembered – Interfaces

 8.14 Variables can be declared inside of interface declarations. They are implicitly static and
final , i.e., they cannot be changed by the implementing class. They must also be
initialized.56

 8.15 All methods and variables in an interface are implicitly public. So, when they are
implemented, they must have ‘public’ as their access modifier.57

 8.16 An interface can extend only interfaces; it cannot extend any normal or abstract class.

 8.17 Reference variables of an interface can be declared, and that variable works just like the
reference variable of an abstract class (See point 8.6). And no objects of an interface can be
instantiated, since interfaces are not classes.58

 8.18 If a class includes an interface but does not fully implement the methods defined by that
interface, then that class must be declared as abstract.59

50 p.178, 5th line.
51 p.178, 7th line; last para, 1st line.
52 p.178, 9th line.
53 Note that all abstract methods must be overridden, not all of the methods (i.e., both abstract and non-abstract).
54 p.178, 10th line.
55 p.181, 1st para, 3rd line.
56 p.193, the para before last para.
57 p.193, last line of the para before last para; p.194, 2nd para, 3rd line.
58 p.195, 1st para, lines 1-4.
59 p. 196, topic: Partial Implementations.

36

Exercises

��� 8.1 Generate the output of the following program: [Incourse-1, 2007, Marks: 6. 2007
(similar), Marks: 4]

 1 class Add {
 2 protected int i;
 3 Add(int a) {i = a;}
 4 protected void addIt(int amount) {i += amount;}
 5 protected int getIt() { return i;}
 6 }
 7
 8 class DAdd extends Add {
 9 private int i;
10 DAdd(int a, int b) {
11 super (a);
12 i = b;
13 }
14 protected void addIt(int amount) {i = i + super .i + amount;}
15 protected int getIt() { return i;}
16 protected void doubleIt(int amount) {addIt(2 * amount);}
17 }
18
19 public class TestAdder {
20 public static void main(String args[]) {
21 Add A = new Add(3);
22 DAdd DA = new DAdd(1, 5);
23 A.addIt(20);
24 System.out.println(A.getIt());
25 A = DA;
26 A.addIt(20);
27 System.out.println(A.getIt());
28 DA.doubleIt(20);
29 System.out.println(A.getIt());
30 }
31 }

Solution:

23
26
67

Explanation:

1. Line 23 invokes line 4, and line 24 invokes line 5.
2. Line 26 invokes line 14, and line 27 invokes line 15. See point 8.7
3. Line 28 invokes line 16, which in turn invokes line 14; and line 29 invokes line 15.60

��� 8.2 Generate the output of the following Java program and state the reason of your
result: [2007, Marks: 3. Incourse-2, 2008, Marks: 5]

 1 interface Test {
 2 public int a = 34;
 3 public void add();
 4 public String msg();
 5 }
 6
 7 abstract class T1 implements Test {
 8 int m = 340;
 9 int a = 23;
10 abstract public void add();
11 public String msg() {
12 return "Class T1" + " " + a;
13 }

60 Note that in line 29, A.getIt() is called, not DA.getIt() . But the effect of both is the same according to point 8.7.

37

14 }
15
16 class T2 extends T1 {
17 int k = 124;
18 public void add() {
19 k = k + a;
20 System.out.println("k: " + k);
21 }
22 public String msg() {
23 return "Class T2" + " " + super .msg()
24 + " " + Test.a + " " + m;
25 }
26 }
27
28 class T3 {
29 public static void main(String[] args) {
30 Test ob = new T2();
31 ob.add();
32 System.out.println(ob.msg());
33 }
34 }

Solution:

k: 147
Class T2 Class T1 23 34 340

Explanation:

1. At line 30, the reference variable of the interface ‘Test’ is pointing to an object of
class T2.

2. Line 31 invokes the method add() and that method prints the value of k + a, where
‘a’ is the field having the value 23.

3. Line 32 invokes ob.msg(). As ob is an object of class T2, therefore, the msg()
method in T2 will be invoked. That method in turn invokes the msg() method in T1,
which is the superclass of T2. The msg() method in the superclass prints the value of
the field ‘a’ from class T1.

4. Again, the msg() method in class T2 prints the value of Test.a, which is a constant in
the interface Test.

5. Finally the msg() method in class T2 prints the value of ‘m’.

��� 8.3 Identify errors in the following program and state the reasons. [Incourse-2, 2007.
Marks: 7]

 1 import java.io.*;
 2
 3 class A {
 4 int p = 120;
 5 public void print() { System.out.println("p:" + p); }
 6 }
 7
 8 abstract class B extends A {
 9 int d = 525;
10 public void print() { System.out.println("d:" + d); }
11 public void print(int k) { System.out.println("In B"); }
12 abstract int add();
13 }
14
15 class C extends B {
16 int m = 424;
17 public void print() { System.out.println("m:" + m); }
18 }
19
20 class test {
21 public static void main(String[] args) {
22 A a = new A();

38

23 B b = new B();
24 C c = new C();
25
26 c = a;
27 c.print();
28
29 a = b;
30 a.d = 230;
31 a.print();
32 a.print(120);
33
34 b = c;
35 b.add();
36 }
37 }

Solution:

Error 1: Class C is not abstract and does not override the abstract method add() in
class B. See point 8.12

Error 2: Line 23: Class B is abstract, cannot be instantiated. See point 8.10

Error 3: Line 26: Superclass object cannot be assigned to subclass reference. See point
8.6

Error 4: Line 30: Cannot find symbol (variable d) in Class A, OR, Superclass
reference ‘a’ does not know anything about subclass field ‘d’ which is not in class A. See
point 8.6

Error 5: Line 32: Cannot find method print(int) in Class A, OR, Superclass
reference ‘a’ does not know anything about subclass method print(int) which is not in
class A. See point 8.6

Error 6: Line 35: Method add() is abstract in class B and is not overridden in
class C . See point 8.6 & 8.7

� 8.4 What would be the output of the following statements? [2003. Marks: 3]
 1 class A {
 2 A() { System.out.println("Inside A"); }
 3 }
 4 class B extends A {
 5 B() { System.out.println("Inside B"); }
 6 }
 7 class C extends A {
 8 C() { System.out.println("Inside C"); }
 9 }
10 class Example {
11 public static void main(String[] args) {
12 C obj = new C();
13 }
14 }

Solution:

Inside A
Inside C

Explanation:

See point 8.2. Note that on line 7, class C extends class A, not class B. Don’t forget to
thoroughly check the program at exam, lest you may be fooled!

39

�� 8.5 Consider the following code segment:
 1 interface Face1 {
 2 public void bar();
 3 }
 4
 5 class Class1 {
 6 private int size = 0;
 7 private String name;
 8
 9 public Class1(String name) { this .name = name; }
10 public String getName() { return (name); }
11 public void foo() { System.out.println("Class1.foo()"); }
12 }
13
14 class Class2 extends Class1 implements Face1 {
15 int size = 0;
16 int x;
17
18 public Class2(String name) { super (name); }
19 public void foo() { System.out.println("Class2.foo()"); }
20 public void bar() { System.out.println("Class1.bar()"); }
21 }

What will be the output after the following code is executed? [2005. Marks: 4]
Face1 c = new Class2("ME");
c.bar();

Solution:
Class1.bar()

Explanation:

See point 8.17

��� 8.6 You have to design a class hierarchy as shown below:

The parent class contains the general information about an account and an
abstract method to calculate the yearly interest. For savings account, the interest rate
is 10% and for current account the interest rate is 6%. All the data members of the
Account class are initialized through a parameterized constructor. Your program
should be able to deposit and withdraw money from a saving account. Perform the
same operation on a current account. [Incourse-1, 2007. Marks: 4 + 3 = 7]

Solution:
abstract class Account {
 int acc_No;
 float balance;

 Account(int acc, float initial_Balance) {
 acc_No = acc;
 balance = initial_Balance;
 }

 void deposit(float amount) {
 balance += amount;
 }

Account

Savings Account Current Account

40

 void withdraw(float amount) {
 balance -= amount;
 }

 abstract void calc_Interest();
}

class Sav_Acc extends Account {
 Sav_Acc(int acc_No, float initial_Balance) {
 super (acc_No, initial_Balance);
 }

 void calc_Interest() {
 balance += (balance * 10) / 100;
 }
}

class Curr_Acc extends Account {
 Curr_Acc(int acc_No, float initial_Balance) {
 super (acc_No, initial_Balance);
 }

 void calc_Interest() {
 balance += (balance * 6) / 100;
 }
}
public class Acc_Test {
 public static void main(String[] args) {
 Sav_Acc acc1 = new Sav_Acc(1001, 5000.0f);
 acc1.deposit(1000);
 acc1.calc_Interest();
 acc1.withdraw(500.0f);

 Curr_Acc acc2 = new Curr_Acc(1001, 5000.0f);
 acc2.deposit(1000);
 acc2.calc_Interest();
 acc2.withdraw(500.0f);
 }
}

� 8.7 Implement an abstract class player and two subclasses named batsman and bowler.
Each player has a name, contact address, telephone number and status (either
batsman or bowler). The batsman class maintains the total run obtained by a batsman
and the number of one day matches he participated. Similarly, the bowler class
maintains the total wickets taken by a player and the total number of matches. The
parent class contains an abstract method to calculate the average of each player.
Implement the above classes in Java. Provide constructors to initialize the private
data. Override the toString() method in each class to display the class name. Write a
program to create an object of type batsman and bowler and calculate the average run/
wickets obtained by a player. Your program should also call the toString() method to
display the class name. [2007. Marks: 5]

Solution:

abstract class player {

 static final int BOWLER = 0;
 static final int BATSMAN = 1;
 String name;
 String address;
 String tel;
 int status;

41

 player(String a, String b, String c, int d) {
 name = a;
 address = b;
 tel = c;
 status = d;
 }

 abstract float getAverage();
}

class batsman extends player {
 private int runs;
 private int matches;

 batsman(String a, String b, String c, int d, int e, int f) {
 super (a, b, c, d);
 runs = e;
 matches = f;
 }

 float getAverage() {
 return runs / matches;
 }

 public String toString() {
 return "batsman" ;
 }
}

class bowler extends player {
 private int wickets;
 private int matches;

 bowler(String a, String b, String c, int d, int e, int f) {
 super (a, b, c, d);
 wickets = e;
 matches = f;
 }

 float getAverage() {
 return wickets / matches;
 }

 public String toString() {
 return "bowler" ;
 }
}

public class Test {
 public static void main(String[] args) {
 batsman bat = new batsman("a" , "x" , "9003057" , player.BATSMAN,
 1000, 18);
 bowler ball = new bowler("b" , "y" , "9013592" , player.BOWLER, 500,
 18);
 System.out.println(bat.getAverage());
 System.out.println(ball.getAverage());
 System.out.println(bat);
 System.out.println(ball);
 }
}

42

Chapter 9

Packages
Theories

� 9.1 What is a package? How can you define your own package? [2003. Marks: 1+2]

A package is a namespace61 that organizes a set of related classes and interfaces.

To define a custom package, a package statement has to be included as the first
statement in a Java source file. More than one file can include the same package
statement. For example, to define a package named MyPackage, the following line has to be
added as the first statement in a Java source file:

package MyPackage;

 9.2 How a class or an interface is added to a package? [2005. Marks: 2]

To add a class or an interface to a package, the class or interface should be declared in a
Java source file and a package statement has to be included as the first statement in that
file. Also, the file should be kept under a directory named after the package name. For
example, to add a class named “MyClass” to a package named “MyPackage”, the following
code should be included in a file named MyClass.java, and the file should be kept under a
directory named “MyPackage”.62

package MyPackage;
class MyClass {
 //Class body goes here.
}

 9.3 Show with an example, how you can organize two classes in two different files into
a single package. [2002. Marks: 3]

In the above example, Class1 and Class2 are two classes in two different files, but
they are under the same package named ‘MyPackage’.

 9.4 Discuss the relative merits of using protected access vs. private access in
superclass. [2005. Marks: 3]

A private member in a superclass cannot be accessed from any of its subclasses or any
other classes. On the contrary, a protected member in a superclass can be accessed from
only its subclasses, not from any other classes.

Concepts - Rules for Package Access Specifiers

��� 9.1 5. Anything declared public can be accessed from anywhere.
6. Anything declared private cannot be seen outside of its class.
7. Anything declared as default access (package-private) can be accessed from anywhere

in the same package.
8. Anything declared as protected can be accessed from anywhere in the same

package, plus from only its subclasses outside the package.63

61A namespace is an abstract container for various items. Each item within a namespace has a unique name, but the namespace
allows disambiguation of items with the same name that are in different namespaces.
62 If you don’t have much time at exam, don’t bother including the example.
63 p.186, last para, from 2nd line to the last of that para.

package MyPackage;

class Class1 {
 //Class body goes here.
}

package MyPackage;

class Class2 {
 //Class body goes here.
}

Class1.java Class2.java

43

Notes on the above figures:

1. It is to be assumed that the fields in Alpha are to be accessed from Beta, AlphaSub
and Gamma.

2. Alphasub is a subclass of Alpha.
3. The rulings for a subclass in the same package is identical to the rulings for another

class in the same package. i.e., If another subclass of Alpha – for example –
AlphaSub2 is declared inside Package 1, then its rulings would be the same as those
for Beta. So, no subclasses of Alpha was declared in Package One.

��� 9.2 A class can have only two access modifiers – public and no modifier (i.e., package
default). However, only one class can be public in a file, and the file name must be after that
public class name.

Complete Concepts Program

package p1;

public class P1 {
 public int p1_pub ;
 private int p1_pri ;
 protected int p1_pro ;
 int p1_def ; //Default access
}

class P1_Sub extends P1 {
 P1_Sub() {
 super . p1_pub = 5;
 super . p1_pro = 5;
 super . p1_def = 5;
 //super.p1_pri = 5;
 }
}

class P1_Test {
 P1_Test() {
 P1 p1 = new P1();
 p1. p1_pub = 5;
 p1. p1_pro = 5;
 p1. p1_def = 5;
 //p1.p1_pri = 5;
 }
}

package p2;
import p1.*;

public class P2 {
 P2() {
 P1 p1 = new P1();
 p1. p1_pub = 5;
 //p1.p1_pro = 5;
 //p1.p1_def = 5;
 //p1.p1_pri = 5;
 }
}

class P2_SubP1 extends P1 {
 P2_SubP1() {
 super . p1_pub = 5;
 super . p1_pro = 5;
 //super.p1_def = 5;
 //super.p1_pri = 5;
 }
}

P1.java P2.java

44

Exercises

��� 9.1

Consider the following Java program fragments: [Incourse-2, 2007. Marks: 4]

i. Which instance variables are accessed using the object b inside main() method?
ii. Which instance variables are accessed using the object c inside main() method?
iii. Which instance variables are accessed using the object k inside mCOne() method?

Solution:

i. fBOne.
ii. fCOne.
iii. fBOne, fATwo, fAThree.

��� 9.2 Consider the following Java code segments:

i. Which instance variables can be accessed using object ob1 in the main()

method?
ii. Which instance variables can be accessed using object ob2 in the main()

method?
iii. Which instance variables can be accessed using object ob in the f() method

of class C?

You should state the reasons on behalf of your answers. [2007. Marks: 3]

A.java
package p;
public class A {
 private int a;
 public float p;
 protected int k;
}

B.java
package p;
public class B extends A {
 int s;
 protected int m;
 public void t() {s = k;}
}

C.java
package p;
public class C {
 int r;
 protected int n;
 public void f(){
 B ob = new B();
 }
}

D.java
package q;
import p.*;
public class D extends B {
 void z(){ }
}

E.java
package q;
import p.*;
public class E {
 public static void main(String args[]) {
 D ob1 = new D();
 C ob2 = new C();
 A ob3 = new A();
 }
}

C.java

D.java

A.java

package pA;

public class A {
 private int fAOne;
 protected int fATwo;
 int fAThree;
 public void mAOne(){}
}

package pA;

public class B extends A{
 public int fBOne;
 public void mBOne(){}
}

package pA;

public class C {
 public int fCOne;
 public void mCOne(){
 B k = new B();
 }
}

import pA.*;

class D {
 public static void main(String[] args) {
 B b = new B();
 C c = new C();
 }
}

B.java

45

Solution:

i. Variable ‘p’ can be accessed using ob1 as it is public. Because ob1 is in class E
which is not a subclass of D, therefore, the protected variables ‘k’ and ‘m’
cannot be accessed using obj1.

ii. No variables can be accessed using ob2. Because ob2 is in class E which is not a
subclass of C as well as in different package than C is, therefore, the protected
variable ‘n’ and the default variable ‘r’ cannot be accessed using obj1.

iii. Variables ‘p’, ‘k’, ‘s’ and ‘m’ can be accessed using object ob in the f() method,
because ob is in class C which is in the same package as classes A and B are.

��� 9.3 Define a class named classA in a package pA. This class will contain two public
data member a and b and an abstract method compute(). Now define three classes
named classB, classC and classD in packages pB, pC and pD. Each of the class is a
subclass of classA and will implement the compute() method. In classB, it will compute
eth sum of a and b, in classC, compute the product of a and b and in classD, compute
the result of subtraction. Now write a Java program that will generate call to the
compute() method of each class. [Incourse-2, 2008. Marks: 5]

Solution:

classA.java
package pA;
public abstract class classA {
 public int a, b;
 public abstract int compute();
}

classB.java
package pB;
import pA.*;
public class classB extends classA {
 public int compute() { return a + b; }
}

classC.java
package pC;
import pA.*;
public class classC extends classA {
 public int compute() { return a * b; }
}

classD.java
package pD;
import pA.*;
public class classD extends classA {
 public int compute() { return a - b; }
}

Main.java
import pB.*;
import pC.*;
import pD.*;
public class Main {
 public static void main(String[] args) {
 classB b = new classB();
 System.out.println(b.compute());
 System.out.println(new classC().compute()); //shorthand form
 System.out.println(new classD().compute());
 }
}

46

Chapter 10

Exception Handling

Theories

 10.1 What is an exception? Why do we need to handle exception? [2002. Marks: 2]

An exception is an abnormal condition that arises in a code sequence at run time.

We need to handle exception so that the program does not terminate abruptly64 and we
can display the user a meaningful error message of the situation.

 10.2 What is a Java exception?

A Java exception is an object that describes an exceptional condition that has occurred
in a piece of code.

��� 10.3 What is finally block? Discuss the utility of using the finally block. [2003.
Marks: 1+2]

OR, What is a finally block? When and how is it used? Give a suitable example.
[2004. Marks: 3]

OR, Why should you use finally in your program? [Incourse-2, 2007. Marks: 1]

A finally block is a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block.

The finally block is useful for closing file handles and freeing up any other resources
that might have been allocated at the beginning of a method with the intent of disposing of
them before returning.

��� 10.4 Explain finally with an example. [2005. Marks: 4]

A finally block is a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block. The finally block will execute
whether or not an exception is thrown. If an exception is thrown, the finally block will
execute even if no catch statement matches the exception.

import java.io.*;
class Test {
 public static void main(String[] args) {
 BufferedWriter bout = null ;
 try {
 bout = new BufferedWriter(new FileWriter("c:/a.txt"));
 bout.write("Hello!");
 } catch (IOException e) {
 System.out.println("Error! " + e);
 } finally {
 try {
 bout.close();
 } catch (IOException ex) {}
 }
 }
}

In the above example, if any IOException occurs while executing the code in the try
block, then after executing the code in the catch block, the file will be closed (this
instruction is given in the finally block). If any other type of exceptions occur which is not
handled in the catch block (such as SecurityException), then still the code in the finally
block will execute before the program terminates. If all the statements in the try block
executes successfully, then again, the code in the finally block will execute.

64 Abruptly means “quickly and without warning”.

47

 10.5 Can there be a try block without a catch block?

Yes, there can be a try block without a catch block, provided that there is a finally block
immediately following the try block. Below is an example of such case:

try {
 //Some code
} finally {
 //Some code
}

��� 10.6 State the tasks of throw and throws. [Incourse-3, 2007, Marks: 2. 2007, Marks: 2]

‘throw’ is used to throw an exception explicitly.

A ‘throws’ clause lists the types of exceptions that a method might throw.

 10.7 Why should exception handling techniques not be used for conventional program
control? [2004. Marks: 1]

Exception handling techniques should not be used for conventional program control,
because it will only confuse the code and make it hard to maintain.

 10.8 What happens if an exception occurs and an appropriate exception handler cannot
be found? [2004. Marks: 2]

If an exception occurs and an appropriate exception handler cannot be found, then the
exception is handled by the default handler. The default handler displays a string describing
the exception, prints a stack trace from the point at which the exception occurred, and
terminates the program.

 10.9 What happens when a catch handler throws an exception? [2004. Marks: 2]

When a catch handler throws an exception, a matching catch handler is searched in the
outer try-catch block. If no match is found, then the default handler handles it.

Concepts

 10.1 How an exception is handled65:

1. When an exception is occurred, JVM throws an object of that type of exception on
the line where the exception occurred. If that line is inside a try-catch block, then a
match for that exception is searched among the catch blocks.

2. If no match is found, it is checked whether this try-catch is a nested try-catch. If it is,
then a match for the exception is searched among the parent try-catch block. But
before going there, the finally block of the nested try-catch is executed.

3. If no match is found in the parent try-catch block, then the exception is thrown back
on the line of the calling method. If that calling line is inside a try-catch block, the
catch statements are checked for a match according to rules 1 and 2.

4. If no match is found, again the exception is thrown back on the line of the caller of
this method. But before going there, the finally block of the current method is
executed. This continues until the main method is reached.

5. When no match for the exception is found in the main method, the exception is
thrown to JVM. But before going there, the finally block of the main method is
executed. Now, JVM prints the exception and terminates the program.

6. If, in the middle of travelling, a valid return statement is found, then the exception is
not thrown to the caller method, rather it is destroyed. Therefore, the current method
returns and program execution continues from the next line of the calling method.

65 p. 211, topic: “Nested try Statements”.

48

 10.2 How to create a user-defined exception:

1. Create a class named after your exception, extending the Exception class.
a. In the class, declare a String field and a constructor taking a String variable

as a parameter.
b. Override the toString() method in that class.

2. Declare a parameterized method where you will check for the occurrence of your
exception, and if it occurs, you will throw an object of your exception type. The
method must include the throws keyword.

3. Now, in the main method, in a try block, call the method declared on step 2,
passing it the argument which is to be checked for exception. In the catch block,
catch that exception.

 10.3 Exception class hierarchy:

 10.4 Some important runtime exceptions to be remembered:
ArithmeticException
IndexOutOfBoundsException
 ArrayIndexOutOfBoundsException
 StringIndexOutOfBoundsException
NullPointerException
SecurityException

Points to be Remembered

 10.1 Any time a method is about to return to the caller from inside a try-catch block,
whether via an uncaught exception or an explicit return statement, the finally clause is
also executed just before the method returns.66

 10.2 A method must catch or throw all the exceptions that can occur in the containing code –
except for those of type Error or RuntimeException or any of their subclasses.67

 10.3 Each try block requires at least one catch block or a finally block. In other
words, either the catch clause or the finally clause can be omitted, but not both.68

 10.4 In multiple catch statements, exception subclasses must come before any of their
superclasses.69

 10.5 If any checked exception70 is caught in a catch clause which will never occur in any
statement inside the try block, then a compile-time error will occur.71

66 p.216, 2nd para, 4th line.
67 p.214, topic: throws.
68 p.216, 2nd para, last line.
69 p.210, 3rd para (which starts with “When you use…”).

49

Complete Concepts Program – How an Exception is Handled

See the program of Exercise 10.1

Complete Concepts Program – How to Create a User-Defined Exception

/* UserDefinedExceptin.java
 *
 * In this program, some integer numbers are taken from keyboard,
 * and if any negative integer number is found, the n a user-defined
 * exception named "NegativeNumberException" is thr own. At the end,
 * the summation of the integers are printed.
 */

import java.util.Scanner;

class NegativeNumberException extends Exception {
 String a;

 NegativeNumberException(String x) {
 a = x;
 }

 public String toString() {
 return "Error! Negative number found: " + a;
 }
}

public class UserDefinedException {

 static int check(int x) throws NegativeNumberException {
 if (x <0) {
 throw new NegativeNumberException(Integer.toString(x));
 } else {
 return x;
 }
 }

 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 int sum = 0;
 try {
 while (in.hasNextInt()) {
 sum += check(in.nextInt());
 }
 } catch (NegativeNumberException e) {
 System.out.println(e);
 }
 System.out.println(sum);
 }
}

70 Checked exception means an exception which is checked at compile-time. Exceptions of type Error or RuntimeException or
any of their subclasses are called unchecked exceptions. All other exceptions are checked exceptions.
71 See exercise 10.4 for an application of this point.

50

Exercises

��� 10.1 Generate the output of the following program: [Incourse-2, 2007 (Modified).
Marks: 4]
 1 class TestException {
 2 public static void main(String[] args) throws IllegalAccessException{
 3 TestException ob = new TestException();
 4 try {
 5 System.out.println("return value: " + ob.m());
 6 } catch (ArithmeticException e) {
 7 System.out.println("Exception caught in main");
 8 } finally {
 9 System.out.println("finally--main");
10 }
11 System.out.println("End of main");
12 }
13
14 int m() throws IllegalAccessException {
15 try {
16 return method();
17 } catch (ArithmeticException e) {
18 return 2;
19 } finally {
20 System.out.println("finally--m.");
21 }
22 }
23
24 int method() throws IllegalAccessException {
25 try {
26 int x = 5;
27 if (x == 5) {
28 throw new IllegalAccessException("test");
29 }
30 return x;
31 } catch (IllegalAccessException e) {
32 try {
33 throw new IllegalAccessException("test");
34 } catch (ArithmeticException e1) {
35 return 2;
36 } finally {
37 System.out.println("nested finally: " + e);
38 }
39 } catch (SecurityException e) {
40 return 9;
41 } finally {
42 System.out.println("finally---method");
43 }
44 }
45 }

Solution:
nested finally: java.lang.IllegalAccessException: t est
finally---method
finally--m.
finally--main
Exception in thread "main" java.lang.IllegalAccessE xception: test
 at TestException.method(TestException.java:33)
 at TestException.m(TestException.java:16)
 at TestException.main(TestException.java:5) 72

Explanation:

See point 10.1& concept 10.1

72 Note: In exam, the last output will never be asked to write. I just put it here as an example of concept 10.1.

51

 10.2 Generate the output of the following program: [2007. Marks: 4]
 1 public class test {
 2 public static void main(String[] args) {
 3 test ob = new test();
 4 try {
 5 ob.meth1();
 6 } catch (IllegalAccessException e) {
 7 System.out.println("Exception caught in main.");
 8 }
 9 ob.meth2();
10 ob.meth3();
11 System.out.println("End of main.");
12 }
13
14 void meth2() {
15 try {
16 System.out.println("Method 2");
17 return ;
18 } finally {
19 System.out.println("Method 2 - Finally");
20 }
21 }
22
23 void meth1() throws IllegalAccessException {
24 try {
25 throw new IllegalAccessException("test");
26 } catch (Exception e) {
27 System.out.println("Exception caught in meth1");
28 throw new IllegalAccessException("test");
29 } finally {
30 System.out.println("Method 1 - Finally");
31 }
32 }
33
34 void meth3() {
35 try {
36 System.out.println("Method 3");
37 } finally {
38 System.out.println("Method 3 - Finally");
39 }
40 }
41 }
42

Solution:
Exception caught in meth1
Method 1 - Finally
Exception caught in main.
Method 2
Method 2 - Finally
Method 3
Method 3 - Finally
End of main.

��� 10.3 Write a Java code segment that will take a sequence of positive integer numbers as
input from the keyboard and find the summation of the odd numbers only. If the input
is a negative number, your code segment should throw a user-defined exception. The
main() method should handle this exception and print the error message.73 [Incourse-
2, 2007. Marks: 5]

73 Note that the question asked to write a segment of code, not the full program. So, we don’t need to define the user-defined
exception. Still, it’s better to ask the teacher in charge at the exam hall whether we should design the exception or not.

52

Solution:
public class UserDefinedException {

 static int check(int x) throws NegativeNumberException {
 if (x <0) {
 throw new NegativeNumberException(x);
 } else {
 return x;
 }
 }

 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 int sum = 0, num;
 try {
 while (in.hasNextInt()) {
 num = check(in.nextInt());
 if ((num % 2) != 0) {
 sum += num;
 }
 }
 } catch (NegativeNumberException e) {
 System.out.println(e);
 }
 System.out.println(sum);
 }
}

��� 10.4 Determine errors in the following program. Correct them and generate the output.
 1 class TestException {
 2 public static void main(String args[]) {
 3 try {
 4 method();
 5 System.out.println("After method()");
 6 }
 7 catch (RuntimeException ex) {
 8 System.out.println("Exception in main");
 9 }
10 System.out.println("End of main");
11 }
12
13 static void method() throws Exception {
14 try {
15 final int zero=0;
16 int y=2/zero;
17 System.out.println("Recovered from error");}
18 catch (RuntimeException ex) {
19 System.out.println("Runtime Exception in method");
20 throw ex;
21 } finally {
22 System.out.println("Finally in method");
23 }
24 System.out.println("End of method");
25 }
26 }

Solution:

Error: Line 4: Unreported exception java.lang.Exception, must be caught or declared
to be thrown. See point 10.2

Correction: Line 2 should be:

public static void main(String args[]) throws Exception {

Output:

53

Runtime Exception in method
Finally in method
Exception in main
End of main

Explanation:

See point 10.1& concept 10.1

 10.5 Consider the following two programs:

1.

2.

Correct any errors the programs may contain and generate the output of both
programs. Explain why the output of the two programs are different.74

Solution:

Errors in program 1:

Error 1 (Line 4): Unreported exception java.lang.IllegalAccessException; must be
caught or declared to be thrown.

Correction: Line 2 should be:

static void procdemo() throws IllegalAccessException {

Error 2 (Line 12): Unreported exception java.lang.IllegalAccessException; must be

74 There is almost 0% possibility of this problem to appear at exam. This problem is mainly for making the concept clear.

 1 class throwdemo {
 2 static void procdemo() {
 3 try {
 4 throw new IllegalAccessException();
 5 } catch (ArithmeticException e) {
 6 System.out.println("Arithmetic Exception");
 7 }
 8 }
 9
10 public static void main(String args[]) {
11 try {
12 procdemo();
13 } catch (ArithmeticException e) {
14 System.out.println("Caught in main:"
15 + "Arithmetic Exception");
16 }
17 }
18 }

 1 class throwdemo {
 2 static void procdemo() {
 3 try {
 4 throw new ArithmeticException();
 5 } catch (IllegalAccessException e) {
 6 System.out.println("IllegalAccessException");
 7 }
 8 }
 9
10 public static void main(String args[]) {
11 try {
12 procdemo();
13 } catch (IllegalAccessException e) {
14 System.out.println("Caught in main:"
15 + "IllegalAccessException");
16 }
17 }
18 }

19

54

caught or declared to be thrown.

Correction: Line 10 should be:

public static void main(String args[]) throws IllegalAccessException {

Output of program 1:
Exception in thread "main" java.lang.IllegalAccessE xception
 at throwdemo.procdemo(E10_4_1.java:4)
 at throwdemo.main(E10_4_1.java:12)

Errors in program 2:

Error 1 (Line 5): Exception java.lang.IllegalAccessException is never thrown in body
of corresponding try statement.

Correction: Line 4 should be:

throw new IllegalAccessException();

Error 2 (Line 13): Exception java.lang.IllegalAccessException is never thrown in body
of corresponding try statement.

Correction: Line 2 should be:

static void procdemo() throws IllegalAccessException {

Output of program 2:
IllegalAccessException

Explanation of the reason for the difference in the output of the two programs:

In the first program, the IllegalAccessException was not caught in any of the catch
statements, hence an error message was printed and the program terminated abruptly.

In the second program, the IllegalAccessException was caught inside the procdemo()
method and the statement inside the catch clause was executed.

 10.6 Write a program that will read an integer number and a file name as input from
the keyboard. Your program should add the number at the end of the file. The input
should first take an integer number and then a file name. For example:

11 c:\tem12.txt

Your program should generate a user-defined exception invalidInput if the input is
given in wrong order. For example:

c:\temp12.txt 23

Your program should check whether the filename is valid. If invalid then generate
a user-defined exception invalidFileName (Use exists() method of File class). [Incourse-
3, 2007. Marks: 8]

Solution:

See exercise 19.3

 10.7 Consider the BankAccount class has three methods with preconditions:

1. The constructor (initial balance must not be negative)
2. The withdraw method (withdrawal amount must not be less than the balance)
3. The deposit method (deposit amount must not be negative)

Write code for the BankAccount class so that each of the three methods throws an
IllegalArgumentException if the precondition is violated. [2005. Marks: 6]

55

Solution:
class BankAccount {
 int balance;

 BankAccount(int initialBalance) {
 if (initialBalance < 0) {
 throw new IllegalArgumentException(
 "Initial balance must not be negative.");
 } else {
 balance = initialBalance;
 }
 }

 void withdraw(int amount) {
 if (amount < balance) {
 throw new IllegalArgumentException(
 "Withdrawal amount must not be less than the balanc e.");
 } else {
 balance -= amount;
 }
 }

 void deposit(int amount) {
 if (amount < 0) {
 throw new IllegalArgumentException(
 "Deposit amount must not be negative.");
 } else {
 balance += amount;
 }
 }
}

 10.8 You have to take a date as input. The format of the date is dd/mm/yy. Define your
own exception class that will generate error if dd is an invalid input (for example: dd
is 65). Now write a Java program that will handle the above mentioned scenario.
[Incourse-2, 2008. Marks: 5]

Solution:
import java.util.Scanner;

class DateException extends Exception {
 String a;

 DateException(String x) {
 a = x;
 }
 public String toString() {
 return "Error! Invalid Date: " + a;
 }
}

public class E10_8 {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 String date = in.next();
 try {
 check(date);
 System.out.println(date);
 } catch (DateException ex) {
 System.out.println(ex);
 }
 }

56

 static void check(String x) throws DateException {
 int day = Integer.parseInt(x.substring(0, 2));
 if (day < 1 || day > 31) {
 throw new DateException(x.substring(0, 2));
 }
 }
}

 10.9 Write a Java program that will take two integer numbers as input from the
keyboard. Your program should determine whether the first number is a multiple of
the second number.

Your program should provide checking for the following cases:

i. If any of the two numbers is negative.
ii. If the first number is smaller than the second number.
iii. If the second number is 0.

You should define appropriate exception class for each of the cases and throw an
instance of the correct exception when any of the condition arises. [2007. Marks: 4]

Solution:
import java.util.Scanner;

class NegativeNumberException extends Exception {
 int a;
 NegativeNumberException(int x) { a = x; }
 public String toString() {
 return "Error! Invalid Number: " + a;
 }
}

class InvalidFirstNumberException extends Exception {
 public String toString() {
 return "Error! First Number is smaller than the second num ber." ;
 }
}

class InvalidSecondNumberException extends Exception {
 public String toString() {
 return "Error! Second number cannot be 0." ;
 }
}

public class TestMultiple {
 static void check(int num1, int num2) throws NegativeNumberException,
 InvalidFirstNumberException, InvalidSec ondNumberException {
 if (num1 < 0) {
 throw new NegativeNumberException(num1);
 } else if (num2 < 0) {
 throw new NegativeNumberException(num2);
 } else if (num1 < num2) {
 throw new InvalidFirstNumberException();
 } else if (num2 == 0) {
 throw new InvalidSecondNumberException();
 }
 }

 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 int num1 = in.nextInt();
 int num2 = in.nextInt();
 try {
 check(num1, num2);

57

 if (num1 % num2 == 0) {
 System.out.println(num1 + " is a multiple of " + num2);
 } else {
 System.out.println(num1 + " is not a multiple of " + num2);
 }
 } catch (NegativeNumberException ex) {
 System.out.println(ex);
 } catch (InvalidFirstNumberException ex) {
 System.out.println(ex);
 } catch (InvalidSecondNumberException ex) {
 System.out.println(ex);
 }
 }
}

58

Chapter 11

Multithreaded Programming
Theories & Concepts

 11.1 What is multithreading? What is multithreaded programming? [2005 (Only the
second question. Marks: 1]

Simultaneously running two or more parts of the same program is called
multithreading.

Developing a program which can execute multiple tasks simultaneously is called
multithreaded programming.

 11.2 What are the advantages of multithread? [2002. Marks: 2]

OR, What are the reasons for using multithreading? [2004. Marks: 2]

Multithreading enables one to write very efficient programs that make maximum use of
the CPU, because idle time can be kept to a minimum.

��� 11.3 How can you create a thread in your Java program? [2003. Marks: 3]

OR, Write down the ways by which Java can create multiple threads. [2005.
Marks: 3]

In a Java program, threads can be created in two ways:

1. By implementing the Runnable interface. For example:

class MultiThread implements Runnable {
 Thread t;

 MultiThread() {
 t = new Thread(this);
 t.start();
 }

 public void run() {
 //Some code here
 }
}

2. By extending the Thread class. For example:

class MultiThread extends Thread {

 MultiThread() {
 start();
 }

 public void run() {
 //Some code here
 }
}

��� 11.4 Explain the usefulness of isAlive() and join() functions. [2003. Marks: 2]

OR, Why should you use the isAlive() method in your program? [Incourse-3,
2007. Marks: 2]

OR, Why should you use the join() method in your program? [2007. Marks: 2]

When we need to know whether a thread is still alive or not, we use the isAlive()
method. This method returns true if the thread is alive, and otherwise false .

The join() method waits until the thread on which it is called terminates. Also, an
overloaded form of this method allows to specify a maximum amount of time that the
programmer wants to wait for the specified thread to terminate.

59

 11.5 Describe the complete lifecycle of a thread. [2005. Marks: 3]

A thread starts when its start() method is called. The start() method in return calls the
run() method, in which the code to be executed in the new thread is present. When the run()
method returns, the thread is destroyed.

� 11.6 How do the priorities for threads can be set? [2005. Marks: 2]

The priorities for threads can be set by calling the setPriority() method and passing it an
integer value between 1 and 10. For example:

Thread t = new Thread(this);
t.setPriority(5);

The above example creates a thread and assigns it a normal priority (which is 5).

 11.7 What are the two methods by which threads can be stopped? Describe these
methods. [2005. Marks: 3]

The two methods by which threads can be stopped are:

1. The stop() method:

This method stops the thread on which it is invoked. This method is deprecated75 as
it might cause serious system failures.

2. The interrupt() method:

This method interrupts the execution flow of the thread on which it is invoked.
When the thread interrupts, it may do some other tasks or stop right away. The
following example demonstrates this method:

class newThread extends Thread {
 newThread() {
 start();
 }

 public void run(){
 try {
 do {
 System.out.println(this .isAlive());
 Thread.sleep(1000);
 } while (true);
 } catch (InterruptedException e) {
 return ;
 }
 }
}

class test {
 public static void main(String[] args) {
 newThread a = new newThread();
 a.interrupt();
 }
}

� 11.8 What is synchronization? When do we use it? [2004. Marks: 3]

OR, What do you understand by thread synchronization? [2002. Marks: 1]

When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time. The process by which
this is achieved is called synchronization.

An example of a case when we need synchronization is when two threads try to push in
and pop out data from a stack simultaneously.

75 Deprecated means disapproved, rejected.

60

 11.9 Explain with an example what happens when threads are not synchronized. [2002.
Marks: 3]

The following program demonstrates the situation when threads are not synchronized:

class Print {
 void print(String msg) {
 System.out.print("[" + msg);
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 System.out.println("]");
 }
}

class CallPrint implements Runnable {
 Print target;
 String msg;

 CallPrint(Print trg, String str) {
 target = trg;
 msg = str;
 Thread t = new Thread(this);
 t.start();
 }

 public void run() {
 target.print(msg);
 }
}

class test {
 public static void main(String[] args) {
 Print cp = new Print();
 new CallPrint(cp, "A");
 new CallPrint(cp, "B");
 new CallPrint(cp, "B");
 }
}

The output of the program is as follows:

[A[B[C
]
]
]

But the output should have been as follows:

[A]
[B]
[C]

� 11.10 How can threads be synchronized?

Threads can be synchronized in two ways:

1. By preceding the definition of the method to be synchronized with the keyword
synchronized

76. For example:

class Sync {
 synchronized void synchedMethod() {
 //Some code here
 }
}

2. By using the synchronized statement77. For example:

76 This is known as method serializing.

61

Sync a = new Sync();
synchronized (a) {
 a.synchedMethod();
}

Exercises

�� 11.1 Write a program that will create two threads named one and two from the main
thread. Each of the thread will display the message “Thread name Starting”, where
name is the name of the thread. Each thread will then print a message “Hello from
thread name” 3 times on the screen. Here, name is the name of the child thread. After
each write on the screen it will sleep for 500 milliseconds. Main thread should wait for
the termination of the child threads. [Incourse-3, 2007. Marks: 8]

OR, Develop a simple application program to illustrate the use of multithreads.
[2004. Marks: 5]

Solution:
 1 class NewThread implements Runnable {
 2 Thread t;
 3 String threadName;
 4
 5 NewThread(String name) {
 6 threadName = name;
 7 System.out.println("Thread " + threadName + " Starting");
 8 t = new Thread(this , threadName);
 9 t.start();
10 }
11
12 public void run() {
13 try {
14 for (int i = 0; i < 3; i++) {
15 System.out.println("Hello from therad " + threadName);
16 Thread.sleep(500);
17 }
18 } catch (InterruptedException e) {}
19 }
20 }
21
22 public class E11_1 {
23 public static void main(String[] args) throws InterruptedException{
24 NewThread t1 = new NewThread("one");
25 NewThread t2 = new NewThread("two");
26 t1.t.join();
27 t2.t.join();
28 }
29 }

Explanation & Warnings:

1. The first line of the question was: “Write a program that will create two threads
named one and two from the main thread.” This is applied on line 24 & 25.

2. The second line was: “Each of the thread will display the message “Thread name
Starting”, where name is the name of the thread”. This is applied on line 7.

3. The third line was: “Each thread will then print a message “Hello from thread name”
3 times on the screen. Here, name is the name of the child thread”. This is applied
on lines 14 & 15 by enclosing the print statement by a for-loop.

4. The fourth line was: “After each write on the screen it will sleep for 500
milliseconds”. This is applied on line 16. As the sleep() method throws
InterruptedException, we enclosed it within a try-block. Note that we cannot use

77 Also known as synchronized block.

62

the throws clause on the run() method as the run() method is overridden and
the original method did not include a throws clause.

5. The fifth line was: “Main thread should wait for the termination of the child
threads”. This is applied on lines 26 & 27. Note that we used t1. t.join(); , not
t1.join(); . This is because the method join() is defined in the Thread class, not
in the NewThread class. Here, t1 is an object of NewThread class, and t is an
object of Thread class. So, to access the join() method, we must access the t
object first. Also note that the join() method throws InterruptedException. We are
using the throws clause on the main() method to handle it.

 11.2 Write a program to create two child threads. Now distribute the task of printing
numbers from 1 to 50 between these two threads. Child thread 1 will print the odd
numbers and child thread 2 will print the even numbers. [2003. Marks: 5]

Solution78:
class Print implements Runnable {
 Thread t;
 int startingNumber;

 Print(String name, int x) {
 startingNumber = x;
 t = new Thread(this , name);
 t.start();
 }

 public void run() {
 for (int i = startingNumber; i < 50; i+=2) {
 System.out.println(i);
 }
 }
}

public class E11_2 {
 public static void main(String[] args) {
 Print t1 = new Print("Child Thread 1" , 1);
 Print t2 = new Print("Child Thread 2" , 2);
 }
}

� 11.3 Write a program in Java that will calculate the summation of each column of a 3×3
matrix. Your program should create 3 threads named one, two and three from the
main thread. Each of the threads will calculate the summation of a specific column.
The column number is passed as parameter to a thread. After summing an element of
a specific column the thread will print the name of the thread and the partial sum and
then sleep for 500 milliseconds. Main thread will wait for the termination of the child
thread. [2007. Marks: 6]

Solution:
class MatrixSum implements Runnable {
 Thread t;
 String name;
 int col;
 int [][] matrix;

 MatrixSum(String name, int col, int [][] matrix) {
 this .name = name;
 this .col = col - 1;
 this .matrix = matrix;

78 Note that this solution is not perfect. The program will display all the odd numbers first and then the even numbers. To
synchronize printing between the two threads, not only thread synchronization, but also interthread communication is needed.
Questions on interthread communication are most unlikely to appear at exam (unless the course teacher teaches them well). So,
interthread communication as well as thread synchronization has been omitted from this program.

63

 t = new Thread(this);
 t.start();
 }

 public void run() {
 int summation = 0;
 for (int i = 0; i < 3; i++) {
 summation += matrix[i][col];
 System.out.println(name + " " + summation);
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {}
 }
 }
}

public class E11_3 {
 public static void main(String[] args) {
 int [][] matrix = {{1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}};
 MatrixSum m1 = new MatrixSum("m1" , 1, matrix);
 MatrixSum m2 = new MatrixSum("m2" , 2, matrix);
 MatrixSum m3 = new MatrixSum("m3" , 3, matrix);
 try {
 m1.t.join();
 m2.t.join();
 m3.t.join();
 } catch (InterruptedException e) {}
 }
}

64

Chapter 19

File I/O and Taking Input From Keyboard

Theories

�� 19.1 What is byte stream and charater stream? Suppose in a program byte stream is
required for IO operation. Name some classes that can be used for these purposes.
[2006, 2007. Marks: 2]

Byte stream are classes that provide a rich environment for handling byte-oriented I/O.

Character stream are classes that handles I/O of Unicode characters.

Some classes that can be used for byte stream I/O: BufferedInputStream,
BufferedOutputStream, DataInputStream, DataOutputStream etc.

�� 19.2 What is serialization? [2006, 2007. Marks: 2]

Serialization is the process of converting an object into a sequence of bits so that it can
be stored on a storage medium (such as a file, or a memory buffer) or transmitted across a
network connection link.

When the resulting series of bits is re-read according to the serialization format, it can
be used to create a semantically identical clone of the original object.

Concepts

 19.1 Files and folders are considered as objects. To make a file or folder object, an instance of the
File class is declared and the path of the file/folder is passed as the constructor argument. For
example:

File file = new File("C:/autoexec.bat"); 79
File folder = new File("C:/windows");

In the above example, the file object represents a file and the folder object represents a
folder80.

Remember that it is not necessary for File objects to exist. We can create a File object with
such a path that does not exist currently. However, if we try to perform operations on a non-
existent file, then errors will occur.

To perform operations on a file or folder, first an object of that file or folder is created and
then methods of the File class are called through that object to perform operations.

 19.2 File and Folder manipulation:

The following methods need to be remembered to manipulate files and folders:

Method Description Example
boolean exists() Checks whether the

File object exists
if (file.exists()) {}

boolean isFile() Checks whether the
File object is a file.

if (file.isFile()) {}

boolean
isDirectory()

Checks whether the
File object is a
directory.

if (folder.isDirectory()) {}

String getName() Obtains the name of
a file or folder

System. out.println(file.getName());

79 Note that pathnames are not case sensitive. i.e., “C:/Windows” and “c:/windows” are the same.
80 Folders are also called directories.

65

String getPath() Obtains the path of
a file or folder

System. out.println(file.getPath());

String[] list()
File[] listFiles()

Lists the files inside
a folder

File[] contents = folder.listFiles();

boolean mkdir() Makes a folder
according to the
path and name of
the File object

folder.mkdir();

boolean delete() Deletes the file or
folder represented
by the File object81

file.delete();

long length() Gets the file size in
bytes.82

long size = file.length();

 19.3 Tree representation of the classes in the IO package (Only the classes that we will use):

 19.4 How to read/write binary and character files:

1. To read/write binary files, declare objects of BufferedInputStream/
BufferedOutputStream. To read/write text files, declare objects of BufferedReader/
BufferedWriter .

2. To specify that we want to get input from a file, pass an anonymous object of
FileInputStream/ FileOutputStream/ FileReader/ FileWriter as an argument to the
constructor of the previous object. Again, specify the file name along with path as the
argument of the constructor of the FileStream/ FileReader/Writer object. Example:

BufferedReader br = new BufferedReader(new FileReader("c:/abc.txt"));

3. To make a file appendable, simply pass true as the second parameter of the
FileOutputStream/ FileWriter object. For example:

BufferedWriter br = new BufferedWriter(new FileWriter("c:/abc.txt" , true));

4. To read a file, use the read() method. This method reads a byte at a time, returns it as
an int type and returns -1 when EOF83 is found. On the other hand, to write a file, use the

81 Note: To delete a folder, all the contents of that folder must be deleted before deleting the folder. i.e., only an empty folder can
be deleted.
82 Note that the returned file size is of type long. So, don’t try to assign it to an int . Also note that you can get only file size with
this method. Folder size cannot be get using this method.

IO Package
java.io

Byte Stream Classes
(For Binary files)

InputStream

File
Input

Stream

Filter
Input

Stream

BufferedInput
Stream

DataInputStream

OutputStream

File
Output
Stream

Filter
Output
Stream

BufferedOutput
Stream

DataOutputStream

Character Stream Classes
(For Text files)

Reader

Buffered
Reader

Input
Stream
Reader

FileReader

Writer

Buffered
Writer

Output
Stream
Writer

File
Writer

File

66

write() method. This method takes an int , a char, a char[] or a String as its parameter.
5. To read one line at a time from a text file, use the readLine() method. This method

returns null when EOF is found.
6. To write a new line character, use the newLine() method.
7. Don’t forget to close the files using the close() method.
8. To read/write primitive data types from/into a file, use the DataInputStream/

DataOutputStream classes. Use the readInt() , readFloat() , writeInt() ,
writeFloat() etc. methods to read/write primitive data types.

9. Don’t forget to use either try-catch blocks or the throws clause to handle exceptions.84

 19.5 How to take inputs from keyboard:

1. Create an object of the Scanner class and pass System.in as the argument of the
constructor.

2. To check for the presence of a particular primitive type, use the hasNextInt() ,
hasNextFloat() etc. methods.

3. To actually read those primitive types, use the nextInt() , nextFloat() etc. methods.

 19.6 How to read a string from console (Keyboard):

1. Instantiate an object of the class BufferedReader and pass System.in as its argument.
2. Use the readLine() method to read a line of text.

Complete Concepts Program

/* IO.java

 In this program, we'll learn the following:

 1. How to create file objects.
 2. How to manipulate files.
 3. How to read/write both Binary and Text files one byte at a time.
 4. How to read/write Text files one line at a ti me.
 5. How to read/write primitive data types from/t o files.
 6. How to append data to both Binary and Text fi les.
 7. How to read primitive data types as well as S trings from console.

 */

import java.io.*;
import java.util.*;

public class IO {

 public static void main(String[] args) throws IOException{
 //Manipulating files
 //Displaying the name, path and size of only the fi les contained in a directory
 File f = new File("c:");
 File[] list = f.listFiles();
 for (int i = 0; i < list.length; i++) {
 if (list[i].isFile()) {
 System.out.println(list[i].getName() + " \t" + list[i].getPath() + " \t" +
list[i].length());
 }
 }

 //Checking whether a file or folder exists and dele te it.
 File f2 = new File("c:/abcd.txt");

83 EOF: End Of File.
84 Use the throws clause at exam (if the question doesn’t require you to handle exceptions using try-catch) so that you don’t lose
time unnecessarily.

67

 if (f2.exists()) {
 f2.delete();
 }

 //Copying files using Byte Stream
 BufferedInputStream bin = null ;
 BufferedOutputStream bout = null ;

 int b;
 try {
 bin = new BufferedInputStream(new FileInputStream("c:/abc.pdf"));
 bout = new BufferedOutputStream(new FileOutputStream("c:/a/abc.pdf"));
 while ((b = bin.read()) != -1) {
 bout.write(b);
 }
 } catch (IOException e) {
 System.out.println(e);
 } finally {
 try {
 bin.close();
 bout.close();
 } catch (IOException e) {
 System.out.println(e);
 }
 }

 //Copying Text files using Character Stream
 BufferedReader br = null ;
 BufferedWriter bw = null ;

 int b2;
 try {
 br = new BufferedReader(new FileReader("C:/abc.txt"));
 bw = new BufferedWriter(new FileWriter("C:/a/abc.txt"));
 while ((b2 = br.read()) != -1) {
 bw.write(b2);
 }
 } catch (Exception e) {
 System.out.println(e);
 } finally {
 try {
 br.close();
 bw.close();
 } catch (IOException e) {
 System.out.println(e);
 }
 }

 //Copying Text files by reading and writing one lin e at a time
 BufferedReader br2 = new BufferedReader(new FileReader("C:/abc.txt"));
 BufferedWriter bw2 = new BufferedWriter(new FileWriter("C:/a/abc.txt"));

 String s;
 while ((s = br2.readLine()) != null) {
 bw2.write(s);
 bw2.newLine();
 }

 br2.close();
 bw2.close();

 //Reading and writing primitive data types using Da ta Stream
 DataOutputStream dout = new DataOutputStream(new
FileOutputStream("C:/a.data"));
 DataInputStream din = new DataInputStream(new FileInputStream("C:/a.data"));

 for (int i = 0; i < 5; i++) {

68

 dout.writeInt(i);
 }

 int sum = 0;
 for (int i = 0; i < 5; i++) {
 sum += din.readInt();
 }
 System.out.println(sum);

 dout.close();
 din.close();

 //Appending files (just include an argument "true" in the file constructor)
 BufferedOutputStream bout2 = new BufferedOutputStream(new
FileOutputStream("c:/a/abc.pdf" , true));
 BufferedWriter bw3 = new BufferedWriter(new FileWriter("C:/a/abc.txt" , true));
 DataOutputStream dout2 = new DataOutputStream(new FileOutputStream("C:/a.data" ,
true));
 /* Remember, never try to include "true" as the ar gument for Stream
constructor. For example, the following will be an error:
 BufferedWriter bw3 = new BufferedWriter(new FileWriter("C:/a/abc.txt"), true);
 */

 //Taking input from keyboard
 //This program takes some integer numbers from keyb oard and displays the
 //summation of them.
 Scanner in = new Scanner(System.in);
 int summation = 0;
 while (in.hasNextInt()) {
 summation += in.nextInt();
 }
 System.out.println(summation);

 //Reading Strings from console
 BufferedReader br3 = new BufferedReader(new InputStreamReader(System.in));
 String str;
 do {
 str = br3.readLine();
 } while (!str.equals(""));

 }
}

Exercises

��� 19.1 Write a Java program that will write a list of integer numbers into a file. Your
program will then read the content of the file and find the summation of the
numbers.85 [Incourse-3, 2007. Marks: 7]

Solution:
import java.io.*;

public class E19_1 {
 public static void main(String[] args) {
 DataOutputStream dout = null ;
 DataInputStream din = null ;
 try {
 dout= new DataOutputStream(new FileOutputStream("C:/a.data"));
 din = new DataInputStream(new FileInputStream("C:/a.data"));

85 Note that the marks are 7. So, the examiner expects exception handling. If the marks were 4 or 5, we could have omitted the try-
catch block and simply add the throws clause.

69

 for (int i = 0; i < 5; i++) {
 dout.writeInt(i);
 }

 int sum = 0;
 for (int i = 0; i < 5; i++) {
 sum += din.readInt();
 }
 System.out.println(sum);
 } catch (IOException e) {
 System.out.println("Error: " + e);
 } finally {
 try {
 dout.close();
 din.close();
 } catch (IOException ex) {}
 }

 }
}

��� 19.2 Write a Java code segment that will display the contents of a directory. [Incourse-
3, 2007, Marks: 3. 2007, Marks: 3]

Solution:

 File dir = new File("c:/windows");
 String[] contents = dir.list();
 for (int i = 0; i < contents.length; i++) {
 System.out.println(contents[i]);
 }

��� 19.3 Write a program that will read an integer number and a file name as input from
the keyboard. Your program should add the number at the end of the file. The input
should first take an integer number and then a file name. For example:

11 c:\tem12.txt

Your program should generate a user-defined exception InvalidInput if the input is
given in wrong order. For example:

c:\temp12.txt 23

Your program should check whether the filename is valid. If invalid then generate
a user-defined exception InvalidFileName (Use exists() method of File class).
[Incourse-3, 2007. Marks: 8]

Solution:
import java.io.*;
import java.util.*;

class InvalidInput extends Exception {
 public String toString() {
 return "Invalid input. Usage: <number> <filename>" ;
 }
}

class InvalidFileName extends Exception {
 public String toString() {
 return "The specified file does not exist." ;
 }
}

70

public class E19_3 {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 int num;
 String fileName;
 BufferedWriter bw = null ;

 try {
 System.out.print("Enter the number and the file name: ");
 if (in.hasNextInt()) {
 num = in.nextInt();
 } else {
 throw new InvalidInput();
 }

 fileName = in.next();
 File file = new File(fileName);
 if (!file.exists()) {
 throw new InvalidFileName();
 }

 bw = new BufferedWriter(new FileWriter(fileName, true));
 bw.write(Integer.toString(num));
 } catch (InvalidInput e) {
 System.out.println("Error: " + e);
 } catch (InvalidFileName e) {
 System.out.println("Error: " + e);
 } catch (IOException e) {
 System.out.println("Error: " + e);
 } finally {
 try {
 bw.close();
 } catch (Exception e) {}
 }

 }
}

��� 19.4 Write a Java program that will read a file named “Score.txt”. This file contains
student ID and the scores of the student. Two lines of the file is shown below:

1234 67.5
1235 89.0

Print out the total number of students and the average sore. Find the number of
students who obtains score above the average score. [2007. Marks: 7]

Solution:
import java.io.*;
import java.util.ArrayList;

public class E19_4 {
 public static void main(String[] args) {
 BufferedReader br = null ;
 try {
 br = new BufferedReader(new FileReader("Score.txt"));
 int totalStudents = 0;
 float totalScore = 0;
 String temp;
 ArrayList<Float> scores = new ArrayList<Float>();
 while ((temp = br.readLine()) != null) {
 String[] str = temp.split(" \t");
 float score = Float.parseFloat(str[1]);
 scores.add(score);
 totalScore += score;

71

 totalStudents++;
 }
 float avgScore = totalScore / totalStudents;
 System.out.println("Total Students: " + totalStudents
 + " \nAverage Score: " + avgScore);

 int aboveAverage = 0;
 for (int i = 0; i < scores.size(); i++) {
 if (scores.get(i) > avgScore) {
 aboveAverage++;
 }
 }
 System.out.println("Number of students obtaining " +

 "above average score: " + aboveAverage);
 } catch (IOException e) {
 System.out.println(e);
 }
 }
}

72

Chapter 35

Wrapper Classes, String, Generics and The Collections Framework

Theories

�� 35.1 What are Wrapper Classes?
OR, What are Type Wrappers?
Type Wrappers or Wrapper Classes are classes that encapsulate a primitive type within

an object.

�� 35.2 Why should you need a wrapper class? [Incourse-2, 2007, Marks: 2. 2007, Marks: 1]

We need a wrapper class for the following cases:

1. To pass a primitive type as a reference to a method.
2. To use the Collections Framework which can operate only on objects.
3. To convert primitive types to and from strings.

� 35.3 What is autoboxing and auto-unboxing?

Autoboxing is the process by which a primitive type is automatically encapsulated
(boxed) into its equivalent type wrapper whenever an object of that type is needed.

Auto-unboxing is the process by which the value of a boxed object is automatically
extracted (unboxed) from a type wrapper when its value is needed.

��� 35.4 State the advantages of autoboxing & auto-unboxing. [Incourse-3, 2007, Marks: 2.
2007, Marks: 2]

The advantages of autoboxing and auto-unboxing are:

1. Removes the tedium of manually boxing and unboxing values.
2. Helps prevent errors.
3. Makes working with the Collections Framework much easier.

� 35.5 What is the disadvantage of the String class? How can it be solved?

The disadvantage of the String class is that objects of String class are immutable86.

Using the StringBuffer or the StringBuilder class is the solution for this problem.

 35.6 What is the difference between String class & StringBuffer class? [2002. Marks: 2]

Objects of String class are immutable, whereas objects of StringBuffer class are
changeable.

 35.7 What is the difference between StringBuffer class and StringBuilder class?
Or, What is the advantage of StringBuilder over StringBuffer class?

The difference between StringBuffer and StringBuilder is that the latter is not
synchronized, which means that it is not thread-safe.

The advantage of the StringBuilder class is faster performance.

 35.8 What is the specialty (or utility) of the toString() method?

When an object is used in a concatenating expression or in a call to println() method,
the toString() method of that object is automatically involved. Usually this method
returns a string that appropriately describes an object of a class.

 35.9 What is the Collections Framework?

The Collections Framework87 is a sophisticated hierarchy of interfaces and classes that
provide state-of-the-art88 technology for managing groups of objects.

86 Immutable means unchangeable.

73

 35.10 State the advantages of using collection classes. [Incourse-3, 2007. Marks: 3]

The advantages of using collection classes are:

1. They are high-performance.
2. They allow different types of collections to work in a similar manner and with a

high degree of interoperability.
3. Extending and/or adapting a collection is easy.

Concepts – Primitive Types and Their Respective Wrapper Types

Primitive Types Wrapper Types

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

boolean Boolean

Concepts – String Constructors and Methods

Constructors:

Constructors Examples Content of the String a

String() String a = new String(); ""

String(String str) String a = new String("Hello"); "Hello"

String(char[] chars) char[] c = { 'a' , 'b' , 'c' };

String a = new String(c);

"abc"

String(byte[] bytes) byte[] b = {65, 66, 67};

String a = new String(b);

"ABC"

Methods89:

String a = new String("Hello Universe!");
String b;
String[] str;
int i;
char c;
char[] charArr;

87 Collections in this context means different data structures (for example: array, linked lists, trees, graphs etc.).
 Framework: A structure supporting or containing something (in this case – collections).
88 State-of-the-art: The highest level of development of an art or technique at a particular time (specially the present time).
89 Note: only the shaded methods in the table are important for the exam.

74

Methods Examples

String toUpperCase()

String toLowerCase()

b = a.toUpperCase();

b = a.toLowerCase();

int length() i = a.length();

char charAt(int index) c = a.charAt(0);

int indexOf(Char ch)

int indexOf(String str)

c = a.indexOf('!');

c = a.idexOf ("Uni");

String substring(int beginIndex)

String substring(int beginIndex, int endIndex)

b = a.subString(6);

b = a.subString(6,9);

boolean equals(String anotherString)

boolean equalsIgnoreCase(String anotherString)

if (a.equals("Hi")) {}

if (a.equalsIgnoreCase("Hi")) {}

char[] toCharArray() charArr = a.toCharArray();

boolean startsWith(String prefix)

boolean startsWith(String prefix, int offset)

if (a.startsWith("He")) {}

if (a.startsWith("Un" , 6)) {}

boolean endsWith(String suffix) if (a.endsWith("e!")) {}

String replace(char oldChar, char newChar)

String replace(String target, String replacement)

b = a.replace('o' , 'u');

b = a.replace("o" , "oo");

//b = a.replace('o', "oo"); Error!

boolean contains(String str) if (a.contains("Uni")) {}

String[] split(String regex) str = a.split(" ");

String trim() b = a.trim();

Concepts – Comparative Analysis of the Methods of ArrayList and Vector Classes

Constructors:

ArrayList Vector

ArrayList(int initialCapacity) Vector(int initialCapacity, int capacityIncrement)

ArrayList() [Capacity = 10] Vector(int initialCapacity) [Increment = 0]

 Vector() [Similar to calling Vector(10, 0)]

Methods:

boolean add(E element) boolean add(E element)

void addElement(E obj)

void add(E element) void add(E element)

boolean remove(Object obj) boolean remove(Object obj)

void removeElement(Object obj)

E remove(int index) E remove(int index)

void removeElementAt(int index)

E set(int index, E element) E set(int index, E element)

void setElementAt(E obj, int index)

E get(int index) E get(int index)

E elementAt(int index)

75

int indexOf(Object o) int indexOf(Object o)

boolean contains(Object obj) boolean contains(Object obj)

int size() int size()

void trimToSize() void trimToSize()

<T> T[] toArray(T[] a) <T> T[] toArray(T[] a)

 int capacity()

 void setSize(int newSize)

Points to be Remembered

 35.1 Autoboxing and auto-unboxing occurs whenever primitive types or type wrapper
objects are passed to a method or returned by a method. So, type wrapper objects will not
work as call-by-reference as expected.

Complete Concepts Program – ArrayList and Vector

import java.util.*;

public class CompleteConcept_Chapter35_1 {
 public static void main(String[] args) {
 //Creating an ArrayList object with initial capacit y of 5 elements
 ArrayList<Float> a = new ArrayList<Float>(5);

 a.add(1.1f);
 a.add(2.2f);
 a.add(3.3f);
 System.out.println(a); //Prints: [1.1, 2.2, 3.3]

 a.set(1, 5.5f);
 System.out.println(a); //Prints: [1.1, 5.5, 3.3]

 System.out.println(a.get(0)); //Prints: 1.1
 System.out.println(a.indexOf(5.5f)); //Prints: 1
 System.out.println(a.contains(5.5f)); //Prints: true
 System.out.println(a.size()); //Prints: 3

 a.remove(5.5f);
 System.out.println(a); //Prints: [1.1, 3.3]
 a.remove(0);
 System.out.println(a); //Prints: [3.3]

 //Creating a Vector object with initial capacity of 5 elements
 //and an increment value of 2
 Vector<Integer> v = new Vector<Integer>(5, 2);

 //All the above methods apply to Vector, too.
 //So, they are not repeated here.
 }
}

76

Complete Concepts Program – String

public class CompleteConcept_Chapter35_2 {
 public static void main(String[] args) {
 String a = new String("Hello Universe!");
 String str[];
 char [] charArr;

 System.out.println(a.toUpperCase()); //HELLO UNIVERSE!
 System.out.println(a.toLowerCase()); //hello universe!
 System.out.println(a.length()); //15
 System.out.println(a.charAt(0)); //H
 System.out.println(a.indexOf('e')); //1
 System.out.println(a.indexOf("Uni")); //6
 System.out.println(a.substring(6)); //Universe!
 System.out.println(a.substring(6, 9)); //Uni
 System.out.println(a.equals("hello universe!")); //false
 System.out.println(a.equalsIgnoreCase("hello universe!")); //true
 System.out.println(a.startsWith("Hello")); //true
 System.out.println(a.startsWith("Uni" , 6)); //true
 System.out.println(a.endsWith("e!")); //true
 System.out.println(a.contains("Uni")); //true
 System.out.println(a.replace('e' , 'u')); //Hullo Univursu!
 System.out.println(a.replace("ll" , "lll")); //Helllo Universe!

 charArr = a.toCharArray();
 for (int i = 0; i < charArr.length; i++) {
 System.out.print(charArr[i] + " ");
 }
 System.out.println(); //H e l l o U n i v e r s e !

 str = a.split(" ");
 for (int i = 0; i < str.length; i++) {
 System.out.println(str[i] + " ");
 } //Hello
 //Universe!

 a = " A B C \n " ;
 System.out.println(a); // A B C
 //
 System.out.println(a.trim()); //A B C
 }
}

Exercises

��� 35.1 Write a Java program that will perform the followin g operations: [Incourse-3,
2007, Marks: 5. 2007 (similar), Marks: 4]

1. Create an object of type ArrayList that will contain a list of floating-point
numbers.

2. Now insert the following data: 12.34, 34.5, 5.6, 7.89, 10.12, 3.45
3. Show the number of elements in the object.
4. Remove 5.6 and 10.12
5. Display the content of the object.

 Solution90:

import java.util.ArrayList;

90 Note: Don’t forget to append the ‘f ’ suffix when adding or removing float type elements in the program.

77

public class E35_1 {
 public static void main(String[] args) {
 ArrayList<Float> a = new ArrayList<Float>();

 a.add(12.34f);
 a.add(34.5f);
 a.add(5.6f);
 a.add(7.89f);
 a.add(10.12f);
 a.add(3.45f);

 System.out.println(a.size());
 a.remove(5.6f);
 a.remove(10.12f);

 System.out.println(a);
 }
}

 35.2 Write a generic class and implement it.

Solution:
class Gen<T> {
 T obj;

 Gen(T o) {
 obj = o;
 }

 T getObj() {
 return obj;
 }
}

public class E35_2 {
 public static void main(String[] args) {
 Gen<Integer> a = new Gen<Integer>(100);
 int i = a.getObj();
 System.out.println(i);
 }
}

� 35.3 Suppose you are given a string str with an initial content “Hello, World”. Write
the necessary Java code segment to separate each word of the given string. [2007.
Marks: 3]

Solution:
String s[] = str.split(", ");
for (int i = 0; i < s. length ; i++) {
 System.out.println(s[i]);
}

 35.4 Generate the output of the following Java program: [2007. Marks: 3]
 1 public class E35_4 {
 2 public static String convert(double balance) {
 3 final int width = 16;
 4 final String empty = " " ;
 5 String s = empty + (int) balance;
 6 String ns = empty;
 7 while (s.length() > 3) {
 8 ns = "," + s.substring(s.length() - 3, s.length()) + ns;
 9 s = s.substring(0, s.length() - 3);
10 }
11 ns = s + ns;
12 while (ns.length() < width)

78

13 ns = "-" + ns;
14 return s;
15 }
16
17 public static void main(String[] args) {
18 System.out.println(convert(9876543.21));
19 System.out.println(convert(98765432.1));
20 System.out.println(convert(987654321));
21 }
22 }

Solution:

9
98

	Cover Page
	How This Book is Organized
	On the Website
	Table of Contents
	Chapter 1 (& 2): The History, Evolution and Overview of Java
	Theories

	Chapter 3 (& 5): Data Types, Variables, Arrays and Control Statements
	Theories
	Concepts
	Points to be Remembered
	Complete Concepts Program
	Exercises

	Chapter 4: Operators
	Theories
	Concepts
	Points to be Remembered
	Exercises

	Chapter 6 (& 7): Classes, Objects, Methods and Fields
	Theories
	Points to be Remembered
	Complete Concepts Program – Class, Objects and Methods
	Complete Concepts Program – Inner Classes
	Exercises

	Chapter 8: Inheritance, Abstract Classes and Interface
	Theories
	Points to be Remembered – Inheritance
	Points to be Remembered – Abstract Classes
	Points to be Remembered – Interfaces
	Exercises

	Chapter 9: Packages
	Theories
	Concepts - Rules for Package Access Specifiers
	Complete Concepts Program
	Exercises

	Chapter 10: Exception Handling
	Theories
	Concepts
	Points to be Remembered
	Complete Concepts Program – How an Exception is Handled
	Complete Concepts Program – How to Create a User-Defined Exception
	Exercises

	Chapter 11: Multithreaded Programming
	Theories & Concepts
	Exercises

	Chapter 19: File I/O and Taking Input From Keyboard
	Theories
	Concepts
	Complete Concepts Program
	Exercises

	Chapter 35: Wrapper Classes, String, Generics and The Collections Framework
	Theories
	Concepts – Primitive Types and Their Respective Wrapper Types
	Concepts – String Constructors and Methods
	Concepts – Comparative Analysis of the Methods of ArrayList and Vector Classes
	Points to be Remembered
	Complete Concepts Program – ArrayList and Vector
	Complete Concepts Program – String
	Exercises

