How TO WRITE RECURSIVE FUNCTIONS ON YOUR OWN

In this tutorial, you'll learn - well, you've alrelg read the title - how to write recursive funcsoon your
own. If you're the person to whom recursive fungi@re a mystery, then this tutoriatieinitely for you.

Traditional books try to explain recursive funcsonith a well-known example — finding the factoridla
number. And probably you're desperately trying todfa book where different types of examples are
explained, because you're asking yourself — “do eed to learn something so complex just for this
nonsense and of-no-use problem of finding facts?alGrieve not. We're here to the rescue! For theet
being, just forget what you already know about reicuns. Let’s start with a real-life programmingplem
and try to solve it with simple logics — withouting recursion or such hard-to-understand concepts.

Our problem is very simple — we have to print tbatents of a folder. However, the complex parthis ts,
there may be many children of that folder and eaely contain again more children folders — we have t
print the names odll the folders in the hierarchy. To keep things sempét’'s assume there are no files
contained in any of the folders.

Now, how do we solve it? First, as depictedfigure 1, let's assume there are only tw
children of the given folder. In this case, theegiviolder is the /' (root) folder. Now, we ca

easily write the following code (in Java) to prihe names of the folders.
jure

i mport java.io.File;

1
2
3 public class Fol derContentsPrint {

4 public static void main(String[] args) {

5 File root = new File("/");

6 File[] folders = root.listFiles();

7 for (File folder : folders) {

8 System out . println(fol der.getName());

©

}
10

11 }

Well, it was simple enough! Let’s try to think oo more complex situation — the folder
contains two children € andd, but the foldeb doesn’t contain anythindigure 2). Now,
we have to change the program to print the conteintise foldera along with the contents
of /. The added lines of code are highlighted wth text color.

Figure 2

i mport java.io.File;

1
2
3 public class FolderContentsPrint {
4 public static void main(String[] args) {
5 File root = new File("/");
6 File[] folders = root.listFiles();
7 for (File folder : folders) {
8 System out. printl n(fol der.get Name());
File[] subfolders = folder.listFiles();
10 for (File subfolder : subfolders) {
11 System out . printl n(subfol der. get Nane());
12 }
13 }
14 }
15 }

©

So, that’s it. However, we can improve the readlgbdf the program a bit. Consider the case offtider
b. It doesn’t contain any child. So, for that fold#re contents of the inneor loop (line 11) simply won't

1

execute as theubf ol der s array won’t contain any element. We can includdecking to see whether the
subf ol ders array contains any element, and if not, we wowr#&reconsidetouching the f or loop. The
modified program might look as follows (the prewsbuadded lines are highlighted with green texbcol
and the newly added lines with red text color):

i mport java.io.File;

1
2
3 public class FolderContentsPrint {
4 public static void main(String[] args) {
5 File root = new File("/");
6 File[] folders = root.listFiles();
7 for (File folder : folders) {
8 System out. println(fol der.get Name());
File[] subfolders = folder.listFiles();
10 if (subfolders.length > 0) {
11 for (File subfolder : subfolders) {
12 System out . printl n(subfol der. get Nane()) ;
13 }
14 }
15 }
16
17 }

©

Okay, let's try to make it a bit more complex agaNow, we assume contains two
children namee andf (figure 3). So, we can edit the program again as follows:

i mport java.io.File;

Figure 3

1
2
3 public class Fol derContentsPrint {

4 public static void main(String[] args) {

5 File root = new File("/");

6 File[] folders = root.listFiles();

7 for (File folder : folders) {

8 System out. printl n(fol der.getNanme());

9 File[] subfolders = folder.listFiles();

10 if (subfolders.length > 0) {

11 for (File subfolder : subfolders) {

12 System out . printl n(subfol der. get Nane());

e File[] subSubfolders = subfolder.listFiles();
14 i f (subSubfolders.length > 0) {

15 for (File subSubfolder : subSubfolders) {
16 System out . printl n(subSubf ol der. get Nane()) ;
17 }

18 }

19 }

20 }

21 }

22 }

23 }

Enough! Are we going to add lines of code for e&ader level??? It's totally absurd. We must find a
simpler solution which would work for any levelfolders. The question ishew?

Let's take a closer look at the above program.yoid notice that lines 7-10 has been repeated @3 liri-14
with just a few changes in the names of variab&i@ If we were going to add more lines for the resel
of folders, we would repeat those same lines agamn.how can we get rid of this situation, i.eimnatate
the repeating lines of code? There are two possiilgions — we can either execute a loop sevenais, or
call a procedure for some specific number of tinhet's try to experiment with the second solutigve can
come back to the first one later.

So, we have to put the repeated lines of codeantanction. Then let's do it — just put those linet a
function with a meaningful name — epy. nt Fol der s — and don’t bother with the function parameterg an
return types for now. The function should look ltke following:

1 printFolders() {

2 for (File folder : folders) {

3 System out. printl n(fol der.get Name());

4 File[] subfolders = folder.listFiles();
5 if (subfolders.length > 0) {

6

7 }

8 }

9}

We have to fill upthree gaps in the above function to make itaplete function — the parameters, return
type and the contents of the statement (i.e., line 6). First, let’s try to fiodt the possible parameters of
the function. To find them out, we have to dig ithe code and try to detect amydeclared variables. Yep,
you've got it — the variableol der s is undefined. So, let’s define thel der s variable as a parameter. Wait
a minute though — what about ttype of this variable? If we look at theor loop, we can find that it is a
collection — in this case, an arrayrof e objects. Now, the return type. If we observe tbée; we can come
to the conclusion that it doesn’t return anythiidj. that the function does is to print the namestloé
contents of the folder. Therefore, the above famcwith return type and parameters should look hi&w:

1 void printFolders(File[] folders) {

2 for (File folder : folders) {

3 System out . printl n(fol der.getNanme());

4 File[] subfolders = folder.listFiles();
5 if (subfolders.length > 0) {

6

7 }

8 }

9}

Now remains the final part — the contents ofithestatement. As we’ve already learned, the linesir2{@e
above code will be repeated inside the statement. But theri nt Fol ders() function contains all the
necessary repeating statements. Therefore, weilcgatyscall thepri nt Fol der s() function inside the f
statement. However, this function needs an arguifelypeFi | e[] to be passed when called. What should
it be in this case? Theubfol ders variable, of course. So, the complete functionl Wbk like the
following:

1 void printFolders(File[] folders) {

2 for (File folder : folders) {

3 System out. println(fol der.getNanme());

4 File[] subfolders = folder.listFiles();
5 if (subfolders.length > 0) {

6 pri nt Fol der s(subf ol ders);

7 }

8
9

}

To make the function a bit more readable, we caface the parameter with jusfFal e object. We can list
the contents of that | e objectinside the function:

void printFolders(File root) {
System out. println(root.getName());
File[] folders = root.listFiles();
if (folders.length > 0) {
for (File folder : folders) {
print Fol ders(fol der);

OOk, WNPE

3

}

Our final program (which prints the contents ofigeg folderalong with the name of that given folder)
should look somewhat like below:

1 inport java.io.File;

2

3 public class FolderContentsPrint {

4

5 public static void main(String[] args) {
6 File root = new File("/");

7 Fol der Content sPrint obj = new Fol derContentsPrint();
8 obj . print Fol ders(root);

9 }

10

11 void printFolders(File root) {

12 System out. println(root.getNanme());
13 File[] folders = root.listFiles();
14 if (folders.length > 0) {

15 for (File folder : folders) {
16 print Fol ders(fol der);

17 }

18 }

19 }

20

21 }

Done! You've written a recursive function! Now, bed¢ we formally state the steps for writing a reowe
function, let’s try to grasp the process better.

At this point, we’ll examine the traditional facialr problem. The following program demonstrates How
find the factorial of 5 usingpop:

Systemout.println(result);

1 public class Factorial {

2 public static void main(String[] args) {
3 int number =5, result = 1;

4 for (int i = nunmber; i > 0; i--) {

5 result =i * result;

6 }

7

8

9

—

The above program can be re-written usingia e loop instead of &or loop:

1 public class Factorial {

2 public static void main(String[] args) {
3 int nunmber =5, result = 1;

4 whil e (nunber > 0) {

5 result = result * nunber;

6 nunber - - ;

7 }

8 Systemout.println(result);

9 }

10 }

There is no logical difference between these twisivas of the program. Now, we’ll try to write the
program using recursion. First, let’s focus on tauget — obviously, it's to find out the repeatimges of
code. If we look at thehi | e-loop version of the program, we can easily detieat lines 5 and 6 are the
targeted lines of code. (In case of the -loop version of the program, however, it's not o at first

4

sight thati - - is also a part of the repeating statements; thatg | also supplied thehi | e-loop version.)
Therefore, according to our experience from theriptes problem (printing the contents of a giverdé),
we have to put these two lines into a functiony; get Fact ori al (). We’'ll be ignoring the return type and
parameters for the time being.

1 getFactorial () {

2 result = result * nunber;
3 nunber - - ;

4}

Now, can’'t we determine the parameters of this ion@ Of course! The variables result and number ar
not defined. So, they must be the parameters. Okay, what about the return type? It seems that the
function returns nothing. So, the return type stidadvoi d. The function then becomes as follows:

1 void getFactorial (int result, int number) {
2 result = result * nunber;

3 nunber - -;

4}

So, where are we going to call the function resmelg® It should be after thé®3statement, something like
below:

1 void getFactorial (int result, int number) {
2 result = result * nunber;

3 nunber - -;

4 get Factorial (result, nunber);

51}

Great! But hey, it's going to recursively call thanctioninfinite times! So, we must providecandition on
which the recursion will stop. What is it then2Wé observe thehi | e-loop version of the program, we can
understand that the loop will continudile nunber > 0. So, our function should be calling itsef long
asit finds thatnunber > 0. The modified version of the function is as folkw

1 void getFactorial (int result, int number) {
2 result = result * nunber;

3 nunber - -;

4 if (nunmber > 0) {

5 get Factorial (result, nunber);

6 }

7}

Have we completed writing our recursive functionfiading the factorial of a number? Sorry, thewesis
‘no’. Why? Because, we need to get the valueeslul t . Asresul t is a local variable, when the function
will return, its value will be destroyed. Howevamong the different possible solutions, we’ll predae
solution (as it's conceptually the easiest) — m#ie variable global. Our function might look likbet
following then (the global variable isn’t shown agr

1 void getFactorial (int nunber) {
2 result = result * nunber;

3 nunber - - ;

4 if (nunmber > 0) {

5 get Fact ori al (nunber) ;

6 }

7}

Our complete program should be somewhat simil#nédollowing program:

1 public class Factorial {

2 int result = 1; //the global variable [known as instance variable in java]
3

4 public static void main(String[] args) {
5 int number = b5;

6 Factorial obj = new Factorial ();

7 obj . get Fact ori al (nunber);

8 Systemout.println(obj.result);

9 }

10

11 voi d getFactorial (int nunber) {

12 result = result * nunber;

13 nunber - -;

14 if (number > 0) {

15 get Fact ori al (nunber) ;

16 }

17 }

18 }

However, to make the program more efficient andgasional, it can be thoroughly changed as follows:

1 public class Factorial {

2

3 public static void main(String[] args) {

4 int nunmber = 5;

5 Factorial obj = new Factorial ();

6 System out . printl n(obj.getFactorial (nunber));
7 }

8

9 int getFactorial (int nunber) ({

10 if (number > 0) {

11 return (nunber * getFactorial (nunber - 1));
12 } else {

13 return 1,

14 }

15 }

16

17 }

Notice that the above program is conceptually adedrthan our previous program. When you become
proficient in developing recursive functions, thgyu’ll be able to develogfficient recursive functions on
your own.

Our experiment with recursive functions is donewNdnally, let's take a look at the steps of wrii a
recursive function:

Determine the repeating statements in your program.

Just put those statements into a function withitalsie name.

Determine the parameters of the function by findiagallundeclared variables used inside it.

Determine the return type of the function by obseits behavior. In preliminary stages, you'll

often find that it is of typevoi d. But when you become proficient, you'll notice tthey bringing

some changes into the body of the function, youroake the function return something and thus

make it more efficient and standard-looking.

5. Insert the recursive call to the function into ap@priate place within the function body.

6. Determine and add the necessary condition(s) o thte function calling itself recursively infinite
times.

7. Make any necessary changes to the function to mhakere efficient and professional.

NS -

Remember that you can convert loopsinto recur sive functions and vice-ver sa.

6

One final point before we conclude: Using recurdivections instead of loops doesn’t make your paogr

run more efficiently. Function calls are always empive as various variables and register values are
pushed-popped into and from the stack when a fomasi called or returned from. Then why on earthuldo

we use recursive functions at all?! The answeinngple — to make your program conceptually easier to
understand.

So? What are you waiting for? Get your hands digtynessing with recursive functions! NOW!!

12" Batch (2005-2006),

Dept. of Computer Science & Engineering,
University of Dhaka.

E-mail: sharafat_8271@yahoo.co.uk
Home Page: www.sharafat.info

Blog: http://blog.sharafat.info

