
 

 

TABLE OF CONTENTS 

BASICS OF GRAPH THEORY ......................................................................................................................................................... 1 

GRAPH THEORY, VERTEX (NODE), EDGE, DIRECTED AND UNDIRECTED GRAPH, WEIGHTED AND UNWEIGHTED GRAPH ................................................ 1 

REPRESENTATION OF GRAPHS ................................................................................................................................................................. 1 

ADJACENCY LIST .................................................................................................................................................................................. 1 

ADJACENCY MATRIX ............................................................................................................................................................................. 1 

TAKING A GRAPH AS INPUT FROM KEYBOARD AND STORING IT INTO MEMORY................................................................................................... 2 

A SIMPLE C/C++ PROGRAM TO INPUT AND STORE A DIRECTED UNWEIGHTED GRAPH ......................................................................................... 2 

BFS (BREADTH-FIRST SEARCH) .................................................................................................................................................... 3 

ALGORITHM (INFORMAL) ...................................................................................................................................................................... 3 

APPLICATIONS ..................................................................................................................................................................................... 3 

GRAPH TRAVERSING USING BFS (IN C++) ................................................................................................................................................. 3 

FINDING THE SHORTEST PATH BETWEEN THE SOURCE AND ANOTHER NODE ...................................................................................................... 5 

FINDING THE MOST DISTANT NODE FROM THE SOURCE NODE ........................................................................................................................ 6 

PRINTING THE (SHORTEST) PATH FROM SOURCE TO DESTINATION .................................................................................................................. 6 

FINDING A CYCLE FROM SOURCE AND PRINTING ITS PATH ............................................................................................................................. 6 

DETECTING ANY CYCLE WITHIN AN UNDIRECTED GRAPH ............................................................................................................................... 6 

TESTING A GRAPH FOR BIPARTITENESS ...................................................................................................................................................... 7 

FINDING ALL CONNECTED COMPONENTS IN A GRAPH ................................................................................................................................... 7 

FINDING ALL NODES WITHIN ONE CONNECTED COMPONENT ......................................................................................................................... 7 

DFS (DEPTH-FIRST SEARCH) ........................................................................................................................................................ 8 

ALGORITHM (PSEUDOCODE) .................................................................................................................................................................. 8 

GRAPH TRAVERSING USING DFS (IN C++) ................................................................................................................................................ 8 

CHECKING WHETHER A GRAPH IS CONNECTED ............................................................................................................................................ 9 

EDGE DETECTION ................................................................................................................................................................................. 9 

USE OF TIME IN DFS .......................................................................................................................................................................... 10 

DETECTING CYCLES IN A DIRECTED GRAPH ............................................................................................................................................... 11 

THEOREM: AN UNDIRECTED GRAPH IS ACYCLIC IFF A DFS YIELDS NO BACK EDGES ............................................................................................ 11 

TOPOLOGICAL SORT ........................................................................................................................................................................... 11 

UNIQUE TOPOLOGICAL SORT ............................................................................................................................................................... 12 

ARTICULATION POINT / CUT-VERTEX AND BICONNECTED COMPONENTS ...................................................................................................... 12 

BRIDGE ............................................................................................................................................................................................ 13 

SCC (STRONGLY CONNECTED COMPONENTS) ......................................................................................................................................... 14 

DIJKSTRA’S ALGORITHM ........................................................................................................................................................... 15 

BELLMAN-FORD ALGORITHM ................................................................................................................................................... 17 

SINGLE-SOURCE SHORTEST PATHS IN DAGS ............................................................................................................................. 18 

FLOYD-WARSHALL ALGORITHM ............................................................................................................................................... 19 

PRIM’S ALGORITHM ................................................................................................................................................................. 20 

KRUSKAL’S ALGORITHM ........................................................................................................................................................... 22 

  



1 
 

Node / Vertex 

Edge 

Figure 1: An undirected unweighted graph. 

BASICS OF GRAPH THEORY 

Graph theory, vertex (node), edge, directed and undirected graph, weighted and unweighted graph 

In mathematics and computer science, graph theory is the study of graphs: mathematical structures used 
to model pair-wise relations between objects from a certain collection. A graph in this context refers to a 
collection of vertices or nodes and a collection of edges that connect pairs of vertices. A graph may be 
undirected, meaning that there is no distinction between the two vertices associated with each edge; or its 
edges may be directed from one vertex to another. If some value is assigned to the edges of a graph, then 
that graph is called a weighted graph. If the weights of all the edges are the same, then the graph is called an 
unweighted graph. 

Representation of graphs 

Graphs are commonly represented in two ways: 

1. Adjacency List 
2. Adjacency Matrix 

Adjacency List 

In this representation, each vertex has a list of which vertices it is adjacent to. This causes redundancy in 
an undirected graph: for example, if vertices A and B are adjacent, A's adjacency list contains B, while B's 
list contains A. Adjacency queries are faster, at the cost of extra storage space. 

For example, the undirected graph in Figure 1 can be represented using adjacency list as follows: 

Node Adjacency List 
1 2, 5 
2 1, 3, 5 
3 2, 4 
4 3, 5, 6 
5 1, 2, 4 
6 4 

Adjacency Matrix 

This is the n by n matrix, where n is the number of vertices in the graph. If there is an edge from some 
vertex x to some vertex y, then the element ax, y is 1 (or, in case of weighted graph, the weight of the edge 
connecting x and y), otherwise it is 0. In computing, this matrix makes it easy to find subgraphs, and to 
reverse a directed graph. 

For example, the undirected graph in Figure 1 can be represented using adjacency matrix as follows: 

 1 2 3 4 5 6 
1 0 1 0 0 1 0 
2 1 0 1 0 1 0 
3 0 1 0 1 0 0 
4 0 0 1 0 1 1 
5 1 1 0 1 0 0 
6 0 0 0 1 0 0 
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Taking a graph as input from keyboard and storing it into memory 

It is easier to store a graph into memory and perform operations on it using adjacency matrix rather than 
adjacency list. First, we need to declare a global 2D array. Then, we should prompt the user to input the 
edges. The user should provide 2 numbers (x, y) representing the edge between those two nodes (nodes will 
be denoted as numbers rather than letters). For each pair of (x, y), the corresponding location ax, y at the 
matrix will be filled with a '1'. This is the case for an unweighted, but directed graph. In case of unweighted, 
but directed graph, the location ay, x should also be filled with a '1'. In case of weighted graph, the user 
should input another number indicating the weight, and that number should be stored at the location instead 
of '1'. After the input of the edges, all other locations should be filled with '0'. However, in case of C, C++ or 
Java, this is automatically done as global variables are automatically zero-filled when initialized. 

A simple C/C++ program to input and store a directed unweighted graph 

 1 #include <stdio.h> 
 2  
 3 int graph[100][100];  //A matrix for storing a graph containig 100 nodes maximum 
 4  
 5 int main(int argc, char** argv) { 
 6     printf("Enter number of edges: "); 
 7     int edges; 
 8     scanf("%d", &edges); 
 9     for (int i = 1; i <= edges; i++) { 
10         printf("Enter edge %d: ", i); 
11         int x, y; //Or, int x, y, weight; - for storing weight of edge 
12         scanf("%d %d", &x, &y); //Or, scanf("%d %d %d", &x, &y, &weight); - for weighted graph 
13         graph[x][y] = 1;  //Or, graph[x][y] = weight; - for weighted graph 
14         //graph[y][x] = 1;  //This line should be added for undirected graph 
15     } 
16  
17     return 0; 
18 } 
19  
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Class:  Search Algorithm 
Data Structure: Graph 
Time Complexity: O( | V | + | E | )  
Space Complexity: O( | V | + | E | )  
Optimal:  Yes (for unweighted graphs) 

Breadth-First Search 

General Data 

Order in which the nodes are expanded 

Figure 2: Traversing a graph using BFS 

1 2 

4 3 

src   = 1 

BFS (BREADTH-FIRST SEARCH) 

Finds single-source shortest path in unweighted graph 

In graph theory, breadth-first search (BFS) is a graph search 
algorithm that begins at the root node and explores all the 
neighboring nodes. Then for each of those nearest nodes, it 
explores their unexplored neighbor nodes, and so on, until it finds 
the goal. 

Algorithm (informal) 

1. Put the root node on the queue. 
2. Pull a node from the beginning of the queue and examine it.  
3. If the searched element is found in this node, quit the search 

and return a result. 
4. Otherwise push all the (so-far-unexamined) successors (the 

direct child nodes) of this node into the end of the queue, if 
there are any. 

5. If the queue is empty, every node on the graph has been examined -- quit the search and return "not 
found". 

6. Repeat from Step 2. 

Applications 

Breadth-first search can be used to solve many problems in graph theory, for example: 

� Finding all connected components in a graph 
� Finding all nodes within one connected component 
� Finding the shortest path between two nodes u and v 
� Testing a graph for bipartiteness 

Graph traversing using BFS (in C++) 

Suppose, we have to traverse the directed graph of Figure 2. We’ll start from the node 'src'. 
Let’s assume we have completed the preliminary task of taking input of the graph1: 

 1 #include <stdio.h> 
 2  
 3 int nodes, edges, src; 
 4 int graph[100][100]; 
 5  
 6 int main() { 
 7     printf("No. of nodes, edges, and source node? "); 
 8     scanf("%d %d %d", &nodes, &edges, &src); 
 9     for (int i = 1; i <= edges; i++) { 
10         printf("Edge %d: ", i); 
11         int x, y; 
12         scanf("%d %d", &x, &y); 
13         graph[x][y] = 1; 
14     } 
15     return 0; 
16 } 

                                                           
1 Notice that we’re taking the number of nodes as input. Why? Initially, we’re taking a large matrix for 100 nodes. But we need 
the actual number of nodes in the graph when we try to traverse it. We’ll be using a loop, and it should stop running when we’ve 
completed examining the last node. 
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Figure 4 

1 2 

4 3 

Figure 3 

1 2 

4 3 

Now, let’s try to implement the BFS traverse algorithm: 
19     //run BFS 
20     queue<int> q;           //create a queue 
21     q.push(src);            //1. put root node on the queue 
22     do {     
23         int u = q.front();  //2. pull a node from the beginning of the queue         
24         q.pop(); 
25         printf("%d ", u);   //print the node 
26         for (int i = 1; i <= nodes; i++) {  //4. get all the adjacent nodes 
27             if (graph[u][i] == 1) {   //if an edge exists between these two nodes 
28                 q.push(i);  //4. push this node into the queue 
29             } 
30         }        
31     } while (!q.empty());   //5. if the queue is empty, then all the nodes have been visited 

Analysis of the above program (i.e. how it works) 

Step Line Queue u graph[u][i] Output 
1 21 1 - - - 
2 23, 24, 25 - 1 - 1 
3 26, 27 -  graph[1][2]  
4 28 2    
5 26, 27 2  graph[1][4]  
6 28 4 2    
7 31 4 2 - -  
8 23, 24, 25 4 2 - 1 2 
9 31 4 - -  

10 23, 24, 25 - 4 -  
11 26, 27 -  graph[4][3]  
12 28 3    
13 31 3 - -  
14 23, 24, 25 - 3 - 1 2 3 
15 31 -   1 2 3 

A problem with the above program 

However, our program is correct for the graph in Figure 2, but it won’t work for any 
graph. Consider the graph in Figure 3. When our program finds that node 1 is adjacent 
to node 4, it will enqueue it. Then, when it will see that node 4 is adjacent to node 1, it 
will enqueue it again. This will continue forever. So, we must have a mechanism to 
detect whether a node has already been visited. 

We can use an array of nodes named visited, which will record a 1 if a node has 
been used (i.e., all the adjacent of it have been discovered), and a 0 otherwise. But there 
lies another problem. Again, this solution will work for the graph in Figure 3, but won’t 
work for any graph. Consider the graph of Figure 4. At the point of finding the 
adjacents of node 4, we enqueue nodes 2 and 3 and record a 1 to node 4. But when we’ll  
search for adjacents of 2, we’ll again queue node 3. 

To solve this problem, we can use two numbers instead of one – we’ll assign 0 to nodes which haven’t 
yet been touched, 1 to nodes which we’ve just reached out, and 2 to a node when we’re finished with 
searching its adjacent nodes. We’ll try to search for adjacents of only those nodes whose assigned value is 1. 
Let’s call this process ‘graph coloring’. First, all the nodes are colored white (0). We’ll color each 

   i 

 1 2 3 4 
1 0 1 0 1 
2 0 0 0 0 
3 0 0 0 0 
4 0 0 1 0 

The graph array 
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Figure 5: Finding the shortest path. 

src   = 1 
dest = 3 

1 2 

4 3 

discovered node with gray (1) and then when we’re finished finding all the adjacent nodes of a particular 
node, we’ll color it with black (2)2. 

The modified version of the program is as follows: 

 1 #include <stdio.h> 
 2 #include <queue> 
 3 using namespace std; 
 4  
 5 int nodes, edges, src; 
 6 int graph[100][100], color[100]; 
 7 const int WHITE = 0; 
 8 const int GRAY = 1; 
 9 const int BLACK = 2; 
10  
11 int main() { 
12     printf("Nodes, edges, source? "); 
13     scanf("%d %d %d ", &nodes, &edges, &src); 
14     for (int i = 1; i <= edges; i++) { 
15         printf("Edge %d: ", i); 
16         int x, y; 
17         scanf("%d %d", &x, &y); 
18         graph[x][y] = 1; 
19     } 
20  
21     //run BFS 
22     queue<int> q;           //create a queue 
23     q.push(src);            //1. put root node on the queue 
24     do { 
25         int u = q.front();  //2. pull a node from the beginning of the queue 
26         q.pop(); 
27         printf("%d ", u);   //print the node 
28         for (int i = 1; i <= nodes; i++) {  //4. get all the adjacent nodes 
29             if ((graph[u][i] == 1)  //if an edge exists between these two nodes, 
30                 && (color[i] == WHITE)) {   //and this adjacent node is still WHITE, 
31                 q.push(i);                  //4. push this node into the queue 
32                 color[i] = GRAY;            //color this adjacent node with GRAY 
33             } 
34         } 
35         color[u] = BLACK;   //color the current node black to mark it as dequeued 
36     } while (!q.empty());   //5. if the queue is empty, then all the nodes have been visited 
37  
38     return 0; 
39 } 

Finding the shortest path between the source and another node 

Suppose for a given directed unweighted graph, we have to find the 
shortest path from 'src' to 'dest', where 'src' is the source node and 'dest' is the 
destination node (Figure 5). 

So, while taking input of the graph, we have to take another input – dest. 

Now, first, how do we find the distance between two nodes (e.g. nodes 1 and 3) using BFS? (Forget 
about finding the shortest distance for the time being.) Let’s take the route 1 � 4 � 3. The distance between 
1 and 4 is 1, and 4 and 3 is also 1. So, the total distance between 1 and 3 is 1 + 1 = 2. Therefore, starting 
from the root, the most adjacent nodes of the source are of distance 1. The distance of the next level of nodes 
from the source is of distance 1 plus the distance of their just previous adjacent nodes. So, we can use an 
array – something named distance – to store the distance of each node (from the source node). 

                                                           
2 We need to color the dequeued node with BLACK if we want to detect a cycle within a graph. We’ll be discussing it in a while. 
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Figure 6 

Now, because in BFS a node is enqueued only once, we can be assured that its distance from the source 
is the shortest distance. 

Then, what changes should we bring to our program? 

1. Declare an int array distance[100] on line 6. 
2. Add the statement distance[i] = distance[u] + 1; after line 32. 
3. Finally, the shortest path between 'src' and 'dest' is the value of distance[dest]. 

Finding the most distant node from the source node 

The lastly queued node is the most distant node from the source node. So, the value of the variable u 
after finishing the BFS is our most distant node from the source node. However, in our program, u is 
declared as a local variable inside the do-while loop. To get its value after the loop, we need to declare it 
outside the loop. 

Printing the (shortest) path from source to destination 

To print the path from a source to a destination, we need to keep track of the intermediate nodes between 
those two nodes. We can use an array to store the previous node of the current node. Thus we can get a chain 
of nodes between the source and destination nodes from that array. 

To store the previous node in an array, we can simply declare a global array prev[100], and add the 
statement prev[i] = u; after line 32. 

Now, how do we print the path from that array? The prev array for the graph of Figure 4 would 
somewhat look like the array in Figure 6. Here, we have to backtrack from destination to source. So, to print 
forward from source to destination, we can use a recursion like the following: 

13 void print(int node) {     
14     if (node == 0) 
15         return; 
16     print(prev[node]); 
17     printf("%d -> ", node); 
18 } 

Finding a cycle from source and printing its path 

For any node, if we can find out that there is an edge from it to the source, we can easily say that a cycle 
exists from source to that node. Now, to print the path, simply print the path from source to that node as 
described above, and then print the source node again. The code is somewhat like below: 

57     //find and print cycle from source 
58     for (int i = 1; i <= nodes; i++) { 
59         if (graph[i][src] == 1) { 
60             print(i); 
61             printf("%d\n\n", src); 
62         } 
63     } 

Detecting any cycle within an undirected graph 

If we can detect that there exists an edge from a WHITE or GRAY node to a BLACK node, we can 
easily say that a cycle exists from that BLACK node to the WHITE / GRAY node. 

1 0 
2 4 
3 4 
4 1 



 

Testing a graph for bipartiteness 

In graph theory, a bipartite graph
divided into two disjoint sets U and V
one in V. 

First, we should color the source node with a particular color 
Then, we have to color all the adjacent nodes with another color 

Similarly, we’ll color all the adjacent nodes of RED nodes as BLUE and all 
the adjacent nodes of BLUE nodes as RED. While performing this, if we 
encounter any node which already has a similar color to his adjacent node, 
then we can conclude that the graph is 

running the BFS, we can conclude that t

To apply this logic, we need to define 
another three colors – say GREEN, RED and BLUE. If an adjacent node’s color is GREEN, we’ll color it 
with a different color than the current node (i.e., BLUE if
If we find that the adjacent’s color is already different from the color of the current node, then no problem; 
we’ll simply skip. However, if we find that the adjacent’s color is already the same as the co
current node, then we’ll stop and notify that the graph is not bipartite. The code for this might look like the 
following: 

31     if (parity[i] == GREEN) {
32         if (parity[u] == BLUE) {
33             parity[i] = RED;
34         } else { 
35             parity[i] = BLUE;
36         } 
37     } else if (parity[i] == parity[u]) {
38         //Break and notify that the graph is not bipartite...
39     } 

Remember: Every tree is bipartite.

Finding all connected components in a graph

In an undirected graph, a connected component
maximal connected subgraph. There are three connected components in
Two vertices are defined to be in the same connected component if there exists a 
path between them. A graph is called 
component. 

To find all the connected components in a graph, first, run a BFS from any node.
detect which nodes aren’t traversed (using color). From any of those untraversed nodes, run another BFS. 
Repeat the process until all the nodes have been traversed. The number of times the BFS is run, the number 
of components the graph has. 

Finding all nodes within one connected component

Simple – just run the BFS once! 
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bipartite graph (or bigraph) is a graph whose vertices can be 
V such that every edge connects a vertex in U 

First, we should color the source node with a particular color – say BLUE. 
Then, we have to color all the adjacent nodes with another color – say RED. 

Similarly, we’ll color all the adjacent nodes of RED nodes as BLUE and all 
adjacent nodes of BLUE nodes as RED. While performing this, if we 

encounter any node which already has a similar color to his adjacent node, 
then we can conclude that the graph is not bipartite. Else, after finishing 

running the BFS, we can conclude that the graph is bipartite. 

To apply this logic, we need to define another array of nodes containing 
say GREEN, RED and BLUE. If an adjacent node’s color is GREEN, we’ll color it 

with a different color than the current node (i.e., BLUE if the color of current node is RED and vice
If we find that the adjacent’s color is already different from the color of the current node, then no problem; 
we’ll simply skip. However, if we find that the adjacent’s color is already the same as the co
current node, then we’ll stop and notify that the graph is not bipartite. The code for this might look like the 

(parity[i] == GREEN) { 
(parity[u] == BLUE) { 
parity[i] = RED; 

parity[i] = BLUE; 

(parity[i] == parity[u]) { 
//Break and notify that the graph is not bipartite... 

is bipartite. Also, cycle graphs with an even number of edges are 

Finding all connected components in a graph 

connected component, or simply, component is a 
maximal connected subgraph. There are three connected components in Figure 9
Two vertices are defined to be in the same connected component if there exists a 

A graph is called connected when there is exactly one connected 

To find all the connected components in a graph, first, run a BFS from any node.
detect which nodes aren’t traversed (using color). From any of those untraversed nodes, run another BFS. 
Repeat the process until all the nodes have been traversed. The number of times the BFS is run, the number 

one connected component 

) is a graph whose vertices can be 
 to 

say BLUE. 
say RED. 

say GREEN, RED and BLUE. If an adjacent node’s color is GREEN, we’ll color it 
the color of current node is RED and vice-versa). 

If we find that the adjacent’s color is already different from the color of the current node, then no problem; 
we’ll simply skip. However, if we find that the adjacent’s color is already the same as the color of the 
current node, then we’ll stop and notify that the graph is not bipartite. The code for this might look like the 

ycle graphs with an even number of edges are bipartite. 

is a 
Figure 9. 

Two vertices are defined to be in the same connected component if there exists a 
connected 

To find all the connected components in a graph, first, run a BFS from any node. After the BFS ends, 
detect which nodes aren’t traversed (using color). From any of those untraversed nodes, run another BFS. 
Repeat the process until all the nodes have been traversed. The number of times the BFS is run, the number 

Figure 7: Bipartite Graph 

Figure 8: Testing a graph for  

      bipartiteness 

Figure 9: A graph with  

       three components 
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Class:  Search Algorithm 
Data Structure: Graph 
Time Complexity: O( | V | + | E | )  
Space Complexity: O(h) , where h = length of 
  the longest simple path in 
  the graph. 
Optimal:  No 

Depth-First Search 

General Data 

Order in which the nodes are expanded 

Figure 2: Traversing a graph using DFS 

src = 1 1 2 

4 3 

5 

6 

DFS (DEPTH-FIRST SEARCH) 

Generates spanning tree from a graph 

In graph theory, depth-first search (DFS) is an uninformed 
search3 that progresses by expanding the first child node of the 
search tree that appears and thus going deeper and deeper until a 
goal node is found, or until it hits a node that has no children. Then 
the search backtracks, returning to the most recent node it hadn't 
finished exploring. 

Algorithm (Pseudocode) 
function dfs(vertice v) { 
    mark v as visited; 
    preorder-process(v); 
    for all vertices i adjacent to v such that i is  
 not visited { 
        dfs(i); 
 } 
    postorder-process(v); 
} 

Applications 
Here are some algorithms where DFS is used: 
� Finding connected and strongly connected components 
� Detecting biconnectivity (articulation points / cut-vertex) and bridges 
� Topological sorting 
� Edge detection 
� Finding all-pair paths between source and destination nodes 
� Solving puzzles with only one solution, such as mazes 

Graph traversing using DFS (in C++) 
Suppose, we have to traverse the directed graph of figure 2. We’ll start from the node 'src'. 

Let’s assume we have completed the preliminary task of taking input of the graph4: 

 1 #include <stdio.h> 
 2  
 3 int nodes, edges, src; 
 4 int graph[100][100]; 
 5  
 6 int main() { 
 7     printf("No. of nodes, edges, and source node? "); 
 8     scanf("%d %d %d", &nodes, &edges, &src); 
 9     for (int i = 1; i <= edges; i++) { 
10         printf("Edge %d: ", i); 
11         int x, y; 
12         scanf("%d %d", &x, &y); 
13         graph[x][y] = 1; 
14     } 
15     return 0; 
16 } 

                                                           
3 An uninformed search algorithm is one that does not take into account the specific nature of the problem. As such, they can be 
implemented in general, and then the same implementation can be used in a wide range of problems. The drawback is that most 
search spaces (i.e., the set of all possible solutions) are extremely large, and an uninformed search (especially of a tree) will take a 
reasonable amount of time only for small examples. 
4 Notice that we’re taking the number of nodes as input. Why? Initially, we’re taking a large matrix for 100 nodes. But we need 
the actual number of nodes in the graph when we try to traverse it. We’ll be using a loop, and it should stop running when we’ve 
completed examining the last node. 



 

Now, let’s try to implement the D

18 void dfs(int node) { 
19     color[node] = GREY;     
20     printf("%d ", node);    
21     for (int i = 1; i <= nodes; i++) {
22         if ((graph[node][i] == 1) && (color[i] == WHITE))  {
23             dfs(i); 
24         } 
25     } 
26                             
27 } 

Checking whether a graph is connected

An undirected graph can be easily checked for 
connectivity. A directed graph, however, poses a 
problem. So, if we convert a directed
undirected graph, then we can easily find whether the 
graph is connected. To convert a directed
an undirected graph, just add reversed edges 
edges (figure 3(b)). Now, run DFS (or BFS) 
node. After the traversing finishes,
there is any node marked as WHITE
can be found, then the graph is connected.

Edge detection 

The most natural result of a depth first search of a graph (if it is considered as a function rather than a 
procedure) is a spanning tree of the vertices reached during the search.
edges of the original graph can be divide

1. Tree edge, edges which belong to the spanning tree itself
2. Back edge, which point from 
3. Forward edge, which point from a node of the tree to one of its 

descendants (except the tree edge)
4. Cross edge, which point from a node to another node which is 

its descendant. 

It can be shown that if the graph is 

1. Tree edge detection 

Just run the DFS. Whenever we traverse an adjacent white node
source node, that’s a tree edge. 
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Spanning tree: a spanning tree of a connected
of G that form a tree spanning every vertex. That is, every vertex lies in the tree, but no 
cycles (or loops) are formed.  

A spanning tree of a connected graph G can also be defined as a maximal set of 
that contains no cycle, or as a minimal set of edges that connect all vertices.

9 

(a) Directed graph  

Figure 3: Converting a directed graph into an undirected graph.

1 2 

4 3 

5 

6 

DFS traverse algorithm: 

color[node] = GREY;     //mark node as visited 
, node);    //preorder-process(node) 

i = 1; i <= nodes; i++) { 
((graph[node][i] == 1) && (color[i] == WHITE))  { 

                             //postorder-process(node) [none in this case]

Checking whether a graph is connected 

graph can be easily checked for 
graph, however, poses a 

convert a directed graph into an 
, then we can easily find whether the 

directed graph into 
add reversed edges to all the 

Now, run DFS (or BFS) from any 
s, check whether 

WHITE. If no such node 
the graph is connected. 

The most natural result of a depth first search of a graph (if it is considered as a function rather than a 
of the vertices reached during the search.5 Based on this spanning tree, the 

edges of the original graph can be divided into four classes: 

, edges which belong to the spanning tree itself. 
, which point from a node to one of its ancestors. 

, which point from a node of the tree to one of its 
(except the tree edge). 

, which point from a node to another node which is not 

It can be shown that if the graph is undirected, then all of its edges are either tree edges or back edges.

Whenever we traverse an adjacent white node (and in turn, its adjacent node)

Figure 4

 

connected, undirected graph G is a selection of edges 
of G that form a tree spanning every vertex. That is, every vertex lies in the tree, but no 

A spanning tree of a connected graph G can also be defined as a maximal set of edges of G 
that contains no cycle, or as a minimal set of edges that connect all vertices. 

Figure 5: 

 

(b) Undirected graph 

Converting a directed graph into an undirected graph. 

1 2 

4 3 

5 

6 

process(node) [none in this case] 

The most natural result of a depth first search of a graph (if it is considered as a function rather than a 
Based on this spanning tree, the 

tree edges or back edges. 

(and in turn, its adjacent node) from a 

4: The four types of edges defined by 

a spanning tree. 

Figure 5: A spanning tree (blue heavy 

 edges) of a grid graph. 
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Figure 6: Back, forward and cross edge detection. 
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Figure 8: Forward and cross edge detection. 
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2. Back edge detection 

Consider the graph in figure 6(a). If we try to traverse 
from 3 to 1, we find that 1 is already GREY. So, if we can 
find a GREY node while traversing, then there’s a back edge. 

3. Forward and cross edge detection 

Consider the graph in figure 6(b). After getting back to 1, 
we find that another path exists from 1 to 3. Here, 3 is already 
GREY. According to our just-taken decision, this edge should 
be a back edge. But is it in fact? 

So, we might introduce another color – BLACK. Whenever we finish searching all the adjacent nodes of 
a particular node, we mark it as BLACK. Thus, in figure 6(b), when we try to traverse from 1 to 3, we find it 
as BLACK. So, if we can find a BLACK node while traversing, then there’s a forward edge. 

However, there lies a problem with this decision. Let’s change the appearance of the graph in figure 
6(b) so that it looks like the graph in figure 6(c). Now, while in figure 6(b) 2 was 3’s ancestor, in figure 6(c), 
2 is not 3’s ancestor. So, in that case, the edge (2, 3) is a cross edge rather than a forward edge. But note, 
however, that the graphs are the same. 

Therefore, finding a BLACK means there might be either a forward edge, or a cross edge. Then how 
would we differentiate between the two? 

Use of time in DFS 

While traversing a graph using DFS, we can set a starting time 
(or discovery time) and a finishing time for each node. This 
technique will help us solve the edge detection problems as well 
as all the other problems following those. 

The technique is fairly simple – while running DFS, just set 
the starting time of a node whenever we discover it, and set the 
finishing time when we are sure that all its adjacent nodes have 
been discovered. An example is given in figure 7. 

So, how would you program it? Simple – take a global 
variable – say, time – and initialize it with 1. Take two global 
arrays – e.g. start_time and finish_time – where the starting 
and finishing time of all the nodes will be stored. Whenever a 
node is discovered, we set the current time as its start time and 
increment the value of time. After the for loop in the code for 
DFS, i.e., when working with that node is done, we set the current time as its finishing time and again 
increment the value of time. 

Now, let’s try to solve the problem of detecting forward and cross edges. Consider figure 8 (a) and (b). 
The graphs are the same as those in figure 6 (b) and (c). In case of figure 8(a), we find that the discovery 
time of 1 is less than the discovery time of 3. So, 3 is 1’s descendant. Hence, the edge (1, 3) is a forward 

Figure 7: Using time in DFS 
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Figure 9: Graph for topological sort. 
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edge. On the other hand, in case of figure 8(b), we find that the discovery time of 2 is greater than the 
discovery time of 3. So, 2 is not an ancestor of 3, and hence the edge (2, 3) is a cross edge.6 

Summing up the edge detection techniques, we can conclude the following: 

Let, (u, v) is an edge. 

� If (color[v] == WHITE), then (u, v) is a tree edge. 
� If (color[v] == GREY), then (u, v) is a back edge. 
� If (color[v] == BLACK), then (u, v) is a forward or cross edge. 

• If (start_time[u] < start_time[v]), then (u, v) is a forward edge. 

• If (start_time[u] > start_time[v]), then (u, v) is a cross edge. 

Detecting cycles in a directed graph 

If we can detect a back edge while running DFS, then we can say that the graph has a cycle. If a graph 
does not contain any cycle, then it is called an acyclic graph. 

Theorem: An undirected graph is acyclic iff7 a DFS yields no back edges 

After running DFS, if no back edges can be found, then the graph has only tree edges. (As the graph is 
undirected, therefore, there will be no forward/cross edges but only tree and back edges.) Only tree edges 
imply we have a tree or a forest, which, by definition, is acyclic. 

Topological Sort 

Topological sort of a directed acyclic graph (DAG) G = (V, E): a linear order of vertices such that if 
there exists an edge (u, v), then u appears before v in the ordering. 

The main application of topological sort is in scheduling a sequence of jobs. The jobs are represented by 
vertices and there is an edge from x to y if job x must be completed before job y can be done. (For example, 
washing machine must finish before we put the clothes to dry.) Then, a topological sort gives an order in 
which to perform the jobs. 

Another application of topological sort is in open credit system, where courses are to be taken (in order) 
such that, pre-requisites of courses will not create any problem. 

The algorithm for applying topological sort is quite simple – just sort the nodes in descending (or non-
increasing) order according to their finishing time. Why? Because, in DFS, the deepest node is finished 
processing first. Then its parent is finished processing. Thus, we can say that the deepest node must come 
after its parent. 

So, how do we write the code for sorting the nodes? Easy! Just create 
an array – e.g. top_sort – and whenever you blacken out a node (or, in 
other words, assign its finishing time), insert the node into it. Now, after 
the DFS finishes, you get an array with nodes inserted according to the 
increasing order of their finishing time. How? The first time you assign a 
node its finishing time, the finishing time is of the lowest value. 
Eventually, you end up assigning the highest finishing time to the last 
blacked out node. Thus, you get an array of nodes inserted according to the increasing order of their 
finishing time. Now what? Just print the array in reverse. That’s the topologically sorted list. 
                                                           
6 Note that the result of DFS might vary according to traversal algorithm. If the graph in figure 8(a) is traversed as 1-2-3, then (1, 
3) would be its forward edge. On the contrary, if the graph is traversed as 1-3-2, then (2, 3) would be its cross edge. For this 
reason, in most applications of DFS, we don’t need to distinguish between a forward edge and a cross edge. 
7 i.e., if and only if. 
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Unique Topological Sort 

The above trick for applying topological sort is fine. But how can we find whether the topological sort of 
a particular graph is unique or not? For example, topological sort of the graph in Figure 9 is not unique. The 
sort might be any of the followings: 

a. 1 – 4 – 5 – 3 – 6 – 2 
b. 1 – 2 – 4 – 3 – 6 – 5 
c. 1 – 2 – 4 – 5 – 3 – 6 

One thing we may do is to run the DFS algorithm multiple times while choosing different paths each 
time. If we get multiple topological sorts, then we can conclude that the sort for the graph is not unique. 
However, coding this is complex and inefficient. There is another algorithm for finding topological sort 
using in-degree of edges which is efficient to find out whether the sort is unique. 

In this algorithm, we first determine the in-degree of all the nodes. Now, the node with the lowest in-
degree must come before a node with a greater in-degree than that. We put that node as the first node in the 
topological sort order. Then, we have to find its adjacent nodes. At least one of them must come immediately 
after the first node. To find the next node in the sort order, we simply decrement the in-degree of the first 
node’s adjacent nodes by 1 and then repeat the previous steps again. We repeat these steps for n times where 
n is the number of nodes in the graph. 

A formal approach of describing the algorithm is as follows: 

1. Take an array – named, for example, indegree – and put the in-degree of all the nodes in it. 
2. Take another array – named, for example, sorted – where the nodes will be kept in topological sort 

order. The values in this array after the algorithm finishes are the final result. 
3. From the indegree array, determine the node with the lowest in-degree. Put the node in the sorted 

array. 

4. Set the in-degree of this node to ∞ in the indegree array. 
5. Decrement the in-degree of the adjacent nodes of this node by 1 in the indegree array. 
6. Repeat steps 3 to 5 for n times, where n is the number of nodes in the graph. 

Now let’s return to our concerned problem – how we can determine whether a topological sort is unique. 
Easy! While running the above algorithm, at step 3, if we detect that there are more than one lowest in-
degree values, then we can easily conclude that the topological sort is not unique. 

Articulation Point / Cut-Vertex and Biconnected Components 

The articulation points or cut-vertices of a graph are those nodes, deleting which causes the graph to 
become disconnected. If a graph contains no articulation points, then it is biconnected. If a graph does 
contain articulation points, then it is useful to split the graph into the pieces where each piece is a maximal 
biconnected subgraph called a biconnected component. 

So, how do we find the articulation points? One way is to delete a node and then run BFS/DFS to see 
whether the graph is connected. If the graph is not connected, then that deleted node is an articulation point. 
But this brute-force method is highly inefficient. 

Here is an efficient algorithm. We’ll observe how far above the parent a child can go. If we find that no 
child of a particular parent can go higher than the parent node, then we can conclude that the parent node is 
an articulation point. 
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Figure 10: Articulation Point. 
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So far, so good. But how would we code this? From the 
algorithm, we find that we need to find out whether any child of a 
parent can go above it. Therefore, we need to keep track of how far 
above a node can travel. Let’s take an array of nodes where the 
value of a particular node will represent the maximum ancestor 
node that can be reached by it. Let’s call this array low. Why? We’ll 
see later. 

Now, while running DFS, we’ll first set the discover time of a 
node as its low value, because the node can go from itself to itself. 
Now, while backtracking, when we’ve visited all the adjacents of a 
parent, we have to update the low value of it. How? We’ll take the low values of all its children. We’ll also 
take the discovery time of all the nodes it has a back edge with. And we already have the discovery time of 
that node. Then, the updated low value of the parent would be the lowest low value among all these low 
values. In other words, if the parent node is v and its child or back-edged node is w, then: 

������ �  	
�.   ���������� �����	��� ��� ���� ����� ��, �������� ������ �	��� ��� ���� ����� ��, ��� 

Now, if the low value of any of the parent’s children is greater than or equal to the discovery time of the 
parent, then that parent is an articulation point. In other words, a parent node, v will be an articulation point 
if, for any node w connected with v as a back edge or tree edge, 

low(w) >= d[v] 

Note that to update the low value, we’re taking the lowest of all the other values. That’s why we’re 
calling the array low. 

Note further that, when doing the actual coding, we need to perform the checking before updating the 
low value of the parent. 

Now, there lies a problem. When we compare the low value of B with the discovery time of A (figure 
10), we will get that A is an articulation point. But in fact, it isn’t. So, as A is the root of this tree, it needs to 
be handled separately. A root might or might not be an articulation point. For example, the root in figure 10 
is not an articulation point, whereas the root in figure 9 is. Actually, a root is an articulation point iff it has 
two or more children. To determine whether a root is an articulation point, we should run a DFS from the 
root, and after traversing the first path from the root, if there is any WHITE node left, we can conclude that 
the root is an articulation point. 

Bridge 

A bridge is an edge deleting which causes the graph to become disconnected. 

Any edge in a graph that does not lie on a cycle is a bridge. Bridges either end in 
articulation points or in dead-ends. As an example, in the graph of figure 11, (C, D) and 
(D, E) are bridges, C and D are articulation points, while E is a dead-end. Note that (A, 
B), (A, C) and (B, C) are not bridges as they lie on the cycle ABC. 

 

 

A B 

C D E 

Figure 11: Graph with 

bridges marked. 
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SCC (Strongly Connected Components) 

A directed graph is called strongly connected if there is a path from each vertex in the graph to every 
other vertex. 

The strongly connected components (SCC) of a directed graph are its maximal strongly connected 
subgraphs. 

����� ���� a, b 	� e 
����� ���� ���� SCC; ���� a 
��� 
��� �� 
������� b, e 

������� ����� ���, b 
��� e, a ������� ����� ���, 	� e 
��� a, b ������� ����� ���। 

�������, (f, g) 	� (c, d, h)–� ���� SCC। 

So, how can we find the SCCs? Follow the steps below: 

1. Run DFS from any node (for example a) to compute the finishing time of all the nodes. 
2. Reverse the direction of the edges. 
3. Now run DFS again from the node whose finishing time is the lengthiest. (You can find it from the 

topologically sorted array populated in step 2). 
4. While running the second DFS, output the nodes in the DFS tree. These nodes comprise an SCC. 
5. If there are still unvisited (i.e., white colored) nodes, then repeat steps 3 and 4 from the WHITE node 

whose finishing time is the lengthiest; until there are no more WHITE nodes. 

Note that a node itself is a strongly connected component if nowhere cannot be 
gone from that node. For example, in Figure 12, nodes 1, 2 and 4 comprise an SCC. 
Again, only node 3 is also an SCC. 

 

 

  

Figure 22: Graph with strongly 

connected components marked. 

Figure 12 

1 2 

4 3 
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Figure 1: Limitation of BFS. 
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Figure 2: Dijkstra’s Algorithm. 
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Source 

DIJKSTRA’S ALGORITHM 

Finds single-source shortest path in weighted graph 

The problem with BFS is that it won’t produce correct result when applied to a 
weighted graph. Consider the graph in figure 1. BFS would say that (1, 3) is the 
shortest path. But considering weight, we find that (1, 2, 3) is the shortest path. 
Therefore, how would we calculate shortest path from a weighted graph? 

Dijkstra comes to the rescue! Dijkstra’s algorithm is a greedy algorithm where 
each time we try to take the route with the lowest cost (or weight). So, whenever we find more than one 
adjacents of a node, we’ll take the adjacent node whose cost is the lowest and proceed. 

First, let’s take an array cost where the cost of the nodes from the source node would be placed. Now, 
let’s set the cost of the source node as 0, because the cost to visit the source node from itself is 0. Well, let’s 
set the cost of all the other nodes as ∞. Why? Because, initially, we’re considering that we can go nowhere 
from the source node. When we’ll discover that we’re able to go somewhere, then we’ll update the cost with 
some other values. 

Now, follow the steps below: 

1. Put all the nodes into a priority queue and sort them according to the non-decreasing order of their 
cost. 

2. Pop the front node v from queue. 
3. For all adjacent nodes i of v, update the cost of i if cost[v] + graph[v][i] < cost[i]; i.e., the cost from 

the source to node i (via node v) is less than the cost of node i (via some other route). 
4. Repeat steps 2 and 3 until the queue is empty. 

If we save the previous node while updating into another array, then we’ll be able to find the shortest 
path of all the nodes from the source node using that array. 

Note: Dijkstra’s algorithm might fail if negative cost is used. 
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The run-time complexity of Dijkstra’s algorithm is: 

� O(n2) – when we use array instead of heap. 

� O(E logV) – when min-heap is used to find the minimum element from KEY. (KEY[v] is the 
minimum cost of any edge connecting a vertex v to a vertex in the tree being generated from the 
source node.) 

� O(E + V logV) – when fibonacci-heap is used to find the minimum element from KEY. 
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1 2 
-1 

BELLMAN-FORD ALGORITHM 

Finds single-source shortest path in weighted graph and detects negative cycles 

If negative cost is used, Dijkstra’s algorithm 
might fail. As an example, for the graph of figure 
1(a), Dijkstra would produce correct result, whereas 
for the graph of figure 1(b), if would get into an 
infinite loop when printing shortest path. 

If the graph does contain a cycle of negative 
weights, Bellman-Ford, however, can only detect 
this; Bellman-Ford cannot find the shortest path that 
does not repeat any vertex in such a graph. 

Bellman-Ford is in its basic structure very 
similar to Dijkstra's algorithm, but instead of 
greedily selecting the minimum-weight node not yet processed to relax8, it simply relaxes all the edges, and 
does this |V| − 1 times, where |V| is the number of vertices in the graph. The repetitions allow minimum 
distances to accurately propagate throughout the graph, since, in the absence of negative cycles, the shortest 
path can only visit each node at most once. 

The algorithm is as follows: 

   // Step 1: Initialize graph 
   for each vertex v in vertices: 
       if v is source then v.distance := 0 
       else v.distance := infinity 
       v.predecessor := null 
    
   // Step 2: relax edges repeatedly 
   for i from 1 to size(vertices)-1: 
       for each edge uv in edges: // uv is the edge from u to v 
           u := uv.source 
           v := uv.destination 
           if v.distance > u.distance + uv.weight: 
               v.distance := u.distance + uv.weight 
               v.predecessor := u 
 
   // Step 3: check for negative-weight cycles 
   for each edge uv in edges: 
       u := uv.source 
       v := uv.destination 
       if v.distance > u.distance + uv.weight: 
           error "Graph contains a negative-weight cycle" 

In words, we have to update all the nodes’ cost for (|V| - 1) times. Then, we have to perform the checking 
for negative cycles for each edge. 

Bellman–Ford runs in O(|V|·|E|) time. 

Note: Negative cycle is guaranteed if negative weight undirected edge can be found. For example: 

 

                                                           
8
 Relaxing an edge (u, v) means testing whether we can improve the shortest path to v found so far by going through u. 
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Figure 1: Dijkstra’s Algorithm with negative cost. 
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SINGLE-SOURCE 

So far we’ve seen algorithms to solve single
undirected graphs. What about directed
graphs (as shortest path cannot be calculated for a directed graph containing cycles)?

The idea is to topologically sort the vertices of the graph and relax the edges 
according to the order given by the 
edge that starts from that vertex. 

The running time of this algorithm is O(

Note that shortest paths are well defined in a DAG as (negative weight) cycles cannot exist.

Example 

In the following graph, we have to find the shortest paths from node 
of the nodes is r – s – t – x – y – z.
which we initialize to 0. 

18 

OURCE SHORTEST PATHS IN 

So far we’ve seen algorithms to solve single-source shortest path problem for 
directed graphs, or, more precisely, directed acyclic

graphs (as shortest path cannot be calculated for a directed graph containing cycles)?

The idea is to topologically sort the vertices of the graph and relax the edges 
according to the order given by the topological sort. For each vertex, we relax each 

The running time of this algorithm is O(V + E). 

Note that shortest paths are well defined in a DAG as (negative weight) cycles cannot exist.

In the following graph, we have to find the shortest paths from node s. Let, the topologically sorted order 
z. We initialize the costs of all nodes as ∞ – 

 

 

 

ATHS IN DAGS 

source shortest path problem for 
acyclic 

graphs (as shortest path cannot be calculated for a directed graph containing cycles)? 

The idea is to topologically sort the vertices of the graph and relax the edges 
or each vertex, we relax each 

Note that shortest paths are well defined in a DAG as (negative weight) cycles cannot exist. 

. Let, the topologically sorted order 
 except the source node, s, 



 

FLOYD-

Finds all-pair

The Floyd-Warshall algorithm compares all possible paths through the graph between each pair of 
vertices. Here, all we do is to find out the shortest path between two nodes 
n). 

The Floyd-Warshall algorithm is an example of dynamic programming.

Algorithm 

/* Assume a function edgeCost(i,j) which returns the cost of the edge from i to j 
   (infinity if there is none). 
   Also assume that n is the number of vertices and edgeCost(i,i)=0 
*/ 
 
int path[][]; 
/* A 2-dimensional matrix. At each step in the algorithm, path[i][j] is the shortest 

 path from i to j using interme
 initialized to edgeCost(i,j).

*/ 
 
procedure FloydWarshall() 
   for via = 1 to n 
      for each (i, j) in (1..
         path[i][j] = min ( 

The time complexity of this algorithm is O(|

Behavior with negative cycles 

For numerically meaningful output, Floyd
between any pair of vertices which form part of a negative cycle, the shortest path is not well
because the path can be arbitrarily negative). Nevertheless, if there are negative cycles, Floyd
be used to detect them. A negative cycle can be detected if the path matrix contains a negative number along 
the diagonal. If path[i][i] is negative for some vertex 
cycle. 

Example 

19 

-WARSHALL ALGORITHM

pair shortest paths in weighted graph

Warshall algorithm compares all possible paths through the graph between each pair of 
Here, all we do is to find out the shortest path between two nodes i and j

Warshall algorithm is an example of dynamic programming. 

/* Assume a function edgeCost(i,j) which returns the cost of the edge from i to j 
(infinity if there is none).  

is the number of vertices and edgeCost(i,i)=0 

dimensional matrix. At each step in the algorithm, path[i][j] is the shortest 
from i to j using intermediate values in (1...via). 

edgeCost(i,j). 

(1...n) 
] = min ( path[i][j], path[i][via] + path[via

The time complexity of this algorithm is O(|V|3). 

numerically meaningful output, Floyd-Warshall assumes that there are no negative cycles (in fact, 
between any pair of vertices which form part of a negative cycle, the shortest path is not well
because the path can be arbitrarily negative). Nevertheless, if there are negative cycles, Floyd
be used to detect them. A negative cycle can be detected if the path matrix contains a negative number along 

ive for some vertex i, then this vertex belongs to 

LGORITHM 

in weighted graph 

Warshall algorithm compares all possible paths through the graph between each pair of 
j via all the nodes (1, 2, …, 

/* Assume a function edgeCost(i,j) which returns the cost of the edge from i to j  

is the number of vertices and edgeCost(i,i)=0  

dimensional matrix. At each step in the algorithm, path[i][j] is the shortest 
). Each path[i][j] is 

via][j] ); 

Warshall assumes that there are no negative cycles (in fact, 
between any pair of vertices which form part of a negative cycle, the shortest path is not well-defined, 
because the path can be arbitrarily negative). Nevertheless, if there are negative cycles, Floyd–Warshall can 
be used to detect them. A negative cycle can be detected if the path matrix contains a negative number along 

, then this vertex belongs to at least one negative 

 



 

P

Generates minimum spanning tree

In case of a weighted graph, there might be 
spanning tree, i.e., the spanning tree which has the minimum total cost, we have to use
algorithm. 

The main idea of Prim’s algorithm is to grow a
nearest (lowest weight) vertex and the edge connecting the nearest
algorithm may be presented informally as follows:

Select a vertex to be a tree-node. 
while (there are non-tree vertices) {
  if there is no edge connecting a tree node with a non
           return “no spanning tree”. 
 Select an edge of minimum weight between a tree node and a non
 Add the selected edge and its new vertex to the tree
} 
return tree. 

The run-time complexity of Prim’s algorithm is
algorithm is similar to Dijkstra’s algorithm 
produce a spanning tree, whereas Prim’s algorith

Example 

Image 

 

This is our original weighted graph. The numbers near the arcs indicate 
their weight.

 

Vertex 
and 
D and will be chosen as the second vertex along with the edge 
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PRIM’S ALGORITHM 

Generates minimum spanning tree (MST) (using node-based

In case of a weighted graph, there might be several spanning trees. But if we need to find the minimum 
the spanning tree which has the minimum total cost, we have to use

Prim’s algorithm is to grow an MST from the current spanning 
vertex and the edge connecting the nearest (lowest weight)

algorithm may be presented informally as follows: 

 
tree vertices) { 

if there is no edge connecting a tree node with a non-tree node 
 

elect an edge of minimum weight between a tree node and a non-tree node
dd the selected edge and its new vertex to the tree. 

time complexity of Prim’s algorithm is the same as that of Dijkstra’s algorithm. In fact,
algorithm is similar to Dijkstra’s algorithm – the only difference is that Dijkstra’s algorithm may or may not 
produce a spanning tree, whereas Prim’s algorithm always produces a spanning tree.

Description 

This is our original weighted graph. The numbers near the arcs indicate 
their weight. 

Vertex D has been arbitrarily chosen as a starting point. Vertices 
and F are connected to D through a single edge. 

and will be chosen as the second vertex along with the edge 

based approach) 

several spanning trees. But if we need to find the minimum 
the spanning tree which has the minimum total cost, we have to use Prim’s or Kruskal’s 

from the current spanning tree by adding the 
(lowest weight) vertex to the MST. The 

tree node. 

the same as that of Dijkstra’s algorithm. In fact, Prim’s 
the only difference is that Dijkstra’s algorithm may or may not 

m always produces a spanning tree. 

This is our original weighted graph. The numbers near the arcs indicate 

has been arbitrarily chosen as a starting point. Vertices A, B, E 
through a single edge. A is the vertex nearest to 

and will be chosen as the second vertex along with the edge AD. 



 

 

The next vertex chosen is the vertex nearest to 
from 
away, so we highlight the vertex 

 

The algorithm carries on as above. Vertex 
highlighted.

 

In this case, we can choose between 
7 away from 
vertex 

 

Here, the only vertices available are 
is 9 away from 

 

Vertex 
from 

 

Now all the vertices have been selected and the
shown in green. In this case, it has weight 
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The next vertex chosen is the vertex nearest to either
from D and 7 away from A, E is 15, and F is 6. 
away, so we highlight the vertex F and the arc DF

The algorithm carries on as above. Vertex B, which is 7 away from 
highlighted. 

In this case, we can choose between C, E, and G
7 away from B, and G is 11 away from F. E is nearest, so we highlight the 
vertex E and the arc BE. 

Here, the only vertices available are C and G. C
is 9 away from E. C is chosen, so it is highlighted along with the arc 

Vertex G is the only remaining vertex. It is 11 away from 
from E. E is nearer, so we highlight it and the arc 

Now all the vertices have been selected and the 
shown in green. In this case, it has weight 39. 

either D or A. B is 9 away 
is 6. F is the smallest distance 

DF. 

, which is 7 away from A, is 

G. C is 8 away from B, E is 
is nearest, so we highlight the 

C is 5 away from E, and G 
is chosen, so it is highlighted along with the arc EC. 

is the only remaining vertex. It is 11 away from F, and 9 away 
is nearer, so we highlight it and the arc EG. 

 minimum spanning tree is 



 

KRUSKAL

Generates minimum spanning tree (MST) (using 

The main idea of Kruskal’s algorithm is to grow an MST 
smallest edge connecting two spanning trees.
follows: 

   MST-Kruskal(G,w)

01 A ← ∅  
02 for each vertex v

03    Make-Set(v)  
04 sort the edges of E by non
05 for each edge (u,v) 
06   if Find-Set(u) 

07      A ← A ∪ {(u,v)}
08      Union(u,v)
09 return A  

The overall complexity of the algorithm is: O(

The operations used in the above algorithm are 

� Make-Set(x) – creates a new set whose only member is 

� Union(x, y) – unites the sets that contain 
of the two sets. 

� Find-Set(x) – returns a pointer to the representative of the set containing 

The algorithm (from coding point of view)

1. Sort the edges in ascending order.
2. Now begin choosing the lowest cost edges.
3. However, while choosing edges, we should pay attention so that a 

forming cycles, we need to keep track of 
their values, themselves. Now, while choosing edges, we’ll check whether the
nodes belonging to the edge are the same. 
same, then we’ll replace the higher parent value with the lower parent value.
update the parent value of a particular node, we need to update its
values with its parent value. 

4. The process continues until all the edges ha

Example 

 

This is our original graph. The numbers near the arcs indicate their weight. 
None of the arcs are highlighted.

O(V) �
O(ElogE)        

O(E)        

O(V) � �
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RUSKAL’S ALGORITHM 

Generates minimum spanning tree (MST) (using edge-based

The main idea of Kruskal’s algorithm is to grow an MST from a forest of spanning trees by adding the 
smallest edge connecting two spanning trees. A formal algorithm along with complexity analysis is as 

(G,w) 

vertex v ∈ V[G] do  
 

sort the edges of E by non-decreasing weight w  
each edge (u,v) ∈ E, in order by non-decreasing weight 

Set(u) ≠ Find-Set(v) then 
{(u,v)} 

08      Union(u,v) 

The overall complexity of the algorithm is: O(VE). 

The operations used in the above algorithm are described as follows: 

a new set whose only member is x. 

unites the sets that contain x and y, say, Sx and Sy, into a new set that is the union 

a pointer to the representative of the set containing 

(from coding point of view) is as follows: 

Sort the edges in ascending order. 
Now begin choosing the lowest cost edges. 

while choosing edges, we should pay attention so that a cycle is not formed.
we need to keep track of whose parent is who. Initially, all the nodes’ parents are 

Now, while choosing edges, we’ll check whether the
are the same. If so, then we’ll discard that edge. But if they’re not the 

then we’ll replace the higher parent value with the lower parent value.
of a particular node, we need to update its all other

The process continues until all the edges have been visited. 

This is our original graph. The numbers near the arcs indicate their weight. 
None of the arcs are highlighted. 

based approach) 

from a forest of spanning trees by adding the 
A formal algorithm along with complexity analysis is as 

decreasing weight do 

, into a new set that is the union 

a pointer to the representative of the set containing x. 

cycle is not formed. To prevent 
Initially, all the nodes’ parents are 

Now, while choosing edges, we’ll check whether the parents of the two 
so, then we’ll discard that edge. But if they’re not the 

then we’ll replace the higher parent value with the lower parent value. However, when we 
all other adjacent nodes’ parent 

This is our original graph. The numbers near the arcs indicate their weight. 



 

 

AD and 
chosen, so it is highlighted.

 

CE is now the shortest arc that does not form a cycle, with length 5, so it is 
highlighted as the second arc.

 

The next arc, 
method.

 

The next
arbitrarily, and is highlighted. The arc 
because there already exists a path (in green) between 
form a cycle (

 

The process continues to highlight the next
Many more arcs are highlighted in
form the loop 
because it would form 

 

Finally, the process finishes with the arc 
spanning tree is found.
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and CE are the shortest arcs, with length 5, and 
chosen, so it is highlighted. 

is now the shortest arc that does not form a cycle, with length 5, so it is 
highlighted as the second arc. 

The next arc, DF with length 6, is highlighted using much the same 
method. 

The next-shortest arcs are AB and BE, both with length 7. 
arbitrarily, and is highlighted. The arc BD has been highlighted in red, 
because there already exists a path (in green) between 
form a cycle (ABD) if it were chosen. 

The process continues to highlight the next-smallest arc, 
Many more arcs are highlighted in red at this stage: 
form the loop BCE, DE because it would form the loop 
because it would form FEBAD. 

Finally, the process finishes with the arc EG of length 9, and the minimum 
spanning tree is found. 

are the shortest arcs, with length 5, and AD has been arbitrarily 

is now the shortest arc that does not form a cycle, with length 5, so it is 

with length 6, is highlighted using much the same 

, both with length 7. AB is chosen 
has been highlighted in red, 

because there already exists a path (in green) between B and D, so it would 

smallest arc, BE with length 7. 
red at this stage: BC because it would 

because it would form the loop DEBA, and FE 

of length 9, and the minimum 


