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BASICS OF GRAPH THEORY

Graph theory, vertex (node), edge, directed and undirected graph, weighted and unweighted graph

In mathematics and computer science, graph thedtei study ofraphs: mathematical structures used
to model pair-wise relations between objects frogesdain collection. Agraph in this context refers to a
collection of vertices or nodes and a collection otdges that connect pairs of vertices. A graph may be
undirected, meaning that there is no distinction betweentt® vertices associated with each edge; or its
edges may bdirected from one vertex to another. If some value is as=igto the edges of a graph, then
that graph is called waeighted graph. If the weights of all the edges are theesahen the graph is called an
unweighted graph.

Representation of graphs

Graphs are commonly represented in two ways: © Node / Vertex

I
Edge
1. Adjacency List (3) (2)

2. Adjacency Matrix

Figure 1: An undirected unweighted graph.

Adjacency List

In this representation, each vertex has a listlu€lwvertices it is adjacent to. This causes redong in
an undirected graph: for example, if vertideandB are adjacentA's adjacency list contair3, while B's
list containsA. Adjacency queries are faster, at the cost ofestsrage space.

For example, the undirected graptFigure 1 can be represented using adjacency list as follows

Node | Adjacency List

1 2,5
2 1,3,5
3 2,4
4 3,56
5 1,2,4
6 4

Adjacency Matrix

This is then by n matrix, wheren is the number of vertices in the graph. If thexram edge from some
vertexx to some vertey, then the elemerd, y is 1 (or, in case of weighted graph, the weighthef edge
connectingx andy), otherwise it is 0. In computing, this matrix neakit easy to find subgraphs, and to
reverse a directed graph.

For example, the undirected graptrigure 1 can be represented using adjacency matrix asasilo

1/2|3|/4|5]|6
1/0]1]0|0]1]0
2/1/0(1]0]1|0
3/0/1/0]1]0]0
4/0(0]1]0|1]1
5/1/1/0]1]0]0
6/0/0/0]1]0]|0




Taking a graph asinput from keyboard and storing it into memory

It is easier to store a graph into memory and perfoperations on it using adjacency matrix rathant
adjacency list. First, we need to declare a gl@alarray. Then, we should prompt the user to inpat
edges. The user should provide 2 numbxerg)(representing the edge between those two nodelegnaill
be denoted as numbers rather than letters). Fdr gaic of &, y), the corresponding locaticey, y at the
matrix will be filled with a '1'. This is the caga anunweighted, butdirected graph. In case of unweighted,
but directed graph, the locatiomy, x should also be filled with a '1'. In casewsdighted graph, the user
should input another number indicating the weightjthat number should be stored at the location instead
of '1'. After the input of the edges, all otherdtons should be filled with '0'. However, in cadeC, C++ or
Java, this is automatically done as global varmble automatically zero-filled when initialized.

A smple C/C++ program to input and stor e a directed unweighted graph

1 #include <stdio.h>

2

3 int graph[100][100];

4

5 int main(int argc, char** argv) {

6 printf("Enter nunber of edges: ");

7 i nt edges;

8 scanf (" %l", &edges);

9 for (int i =1; i <= edges; i++) {
10 printf("Enter edge %l: ", i);
11 int x, vy;

12 scanf ("%l %", &, &y);
13 graph[x][y] = 1;

14

15 }

16

17 return O;

18 }

19



BFS (BREADTH-FIRST SEARCH)

Finds single-source shortest path in unweighted graph

In graph theorypreadth-first search (BFS) is a graph search

' ' Breadth-First Search
algorithm that begins at the root node and exploa#sthe e

neighboring nodes. Then for each of those neareslies) it //T\
explores their unexplored neighbor nodes, and sauatil it finds ) é ‘4)
the goal. = L e T
k ® 6 7\8
Algorithm (informal) \9/;1T\ 1T1\'12'
1. Put the root node on the queue. Order in which the nodes are expanded
2. Pull a node from the beginning of the queue andnexait. General Data
3. If the searched element is found in this node, tipg@itsearch Search Algorithm
and return a result. Data Structure: Graph

. . Time Complexity: O(|V|[+]|E])
4. Otherwise push all the (so-far-unexamined) sucesq$loe  SpaceComplexity: O(|V |+ |E|)

direct child nodes) of this node into the end & tfueue, if Optimal: ves (for unweighted graphs})
there are any.

5. If the queue is empty, every node on the graphbleas examined -- quit the search and return "not
found".

6. Repeat from Step 2.

Applications

Breadth-first search can be used to solve manylgmabin graph theory, for example:

» Finding all connected components in a graph

» Finding all nodes within one connected component
» Finding the shortest path between two nadasdv

» Testing a graph for bipartiteness

Graph traversngusing BFS (in C++)

Suppose, we have to traverse the directed grapigafe 2. We'll start from the node 'src'.
Let's assume we have completed the preliminary ¢és#king input of the gragh

1 #include <stdio.h>

2

3 int nodes, edges, src;
4 int graph[100][ 100];

5

6 int main() { e e sc =1
7 printf("No. of nodes, edges, and source node? ");

8 scanf ("%l %l %", &nodes, &edges, &src);

9 for (int i = 1; i <= edges; i++) { ° e

10 printf("Edge %: ", i);

11 Int x, y; Figure 2: Traversing a graph using BFS
12 scanf ("%l %", &, &y);

13 graph[x][y] = 1;

14 }

15 return O;

16 }

! Notice that we're taking the number of nodes gmiinWhy? Initially, we're taking a large matrixrf@00 nodes. But we need
the actual number of nodes in the graph when wéottyaverse it. We’'ll be using a loop, and it skdostop running when we’ve
completed examining the last node.



Now, let’s try to implement the BFS traverse altori:

19

20 queue<i nt> q;

21 g. push(src);

22 do {

23 int u=gq.front();

24 d. pop();

25 printf("%l ", u);

26 for (int i =1; i <= nodes; i++) {

27 if (graph[u][i] == 1) {

28 g. push(i);

29 }

30 }

31 } while (!qg.enmpty());

Analysis of the above program (i.e. how it works) i —
. , 11234

Step | Line Queue | u | graph[u][i] | Output 110111011
1 21 1 - ° - 2/0/0[0]0
2 |23,24,25]- 1 - 1 3/0/0]0]0
3 |26,27 - graph[ 1] [ 2] 4l0lo01]0
4 |28 2
5 26, 27 2 gr aph[ 1] [4] Thegr aph array
6 |28 42
7 |31 42 -
8 123,24,25|4 2 12
9 |31 4 -
10 | 23,24,25| - 4 -
11 | 26, 27 - graph[ 4] [ 3]
12 | 28 3
13 |31 3 - -
14 | 23, 24, 25/ - 3 - 123
15 (31 - 123

A problem with the above program

However, our program is correct for the graplrigure 2, but it won’t work forany e e
graph. Consider the graph kigure 3. When our program finds that node 1 is adjace
to node 4, it will enqueue it. Then, when it willesthat node 4 is adjacent to node 1, it o e
will enqueue it again. This will continue foreve&3o, we must have a mechanism to
detect whether a node halseady been visited.

Figure 3

We can use an array of nodes namied t ed, which will record a 1 if a node has
been used (i.e., all the adjacent of it have besrodered), and a 0 otherwise. But there 0
lies another problem. Again, this solution will wdor the graph irFigure 3, but won't ’
work for any graph. Consider the graph &igure 4. At the point of finding the ° e
adjacents of node 4, we enqueue nodes 2 and 3eaodira 1 to node 4. But when we’ll
search for adjacents of 2, we’ll again queue nade 3

Figure 4

To solve this problem, we can use two numbers aalstéd one — we’ll assign 0 to nodes which haven't
yet been touched, 1 to nodes which we've just redabut, and 2 to a node when we’re finished with
searching its adjacent nodes. We'll try to seaoshatljacents obnly those nodes whose assigned valuk is
Let's call this process ‘graph coloring’. First,| ahe nodes are colored white (0). We’'ll color each



discovered node with gray (1) and then when we’re finishedliing all the adjacent nodes of a particular
node, we'll color it with black (2)

The modified version of the program is as follows:

1 #include <stdio.h>

2 #include <queue>

3 usi ng namespace std;

4

5 int nodes, edges, src;

6 int graph[100][2100], color[100];

7 const int WH TE = O;

8 const int GRAY = 1;

9 const int BLACK = 2;

10

11 int main() {

12 printf("Nodes, edges, source? ");
13 scanf ("%l %l %l ", &nodes, &edges, &src);
14 for (int i = 1; i <= edges; i++) {
15 printf("Edge %l: ", i);

16 int x, vy;

17 scanf ("%l %", &, &y);

18 graph[x][y] = 1;

19 }
20
21
22 gueue<i nt> q;
23 g. push(src);
24 do {
25 int u=gq.front();
26 d. pop();
27 printf("%l ", u);
28 for (int i =1; i <= nodes; i++) {
29 if ((graph[fu][i] == 1)
30 &% (color[i] == WHITE)) {
31 g. push(i);
32 color[i] = GRAY
33 }
34 }
35 col or[u] = BLACK
36 } while (!qg.enmpty());
37
38 return O;
39 }

Finding the shortest path between the sour ce and another node

Suppose for a given directed unweighted graph, aeehto find the e e _:?3
shortest path from 'src' to 'dest’, where 'srttiéssource node and ‘dest' is the \ B
destination nodeRjgure 5). ° e

So, while taking input of the graph, we have tceetakother input gest . Figure 5: Finding the shortest path.

Now, first, how do we find thelistance between two nodes (e.g. nodes 1 and 3) using BF&get
about finding theshortest distance for the time being.) Let’s take the rdute 4 > 3. The distance between
land 4is 1, and 4 and 3 is also 1. So, the thséhnce between 1 and 3 is 1 + 1 = 2. Therefdaetirsg
from the root, the most adjacent nodes of the soare of distance 1. The distance of the next levebdes
from the source is of distanceplus the distance of their just previous adjacent no&es we can use an
array — something namedst ance — to store the distance of each node (from theceauode).

2 We need to color the dequeued node with BLACKéfwant to detect a cycle within a graph. We'll ficdssing it in a while.
5



Now, because in BFS a node is enqueued only once, wbecassured that its distance from the source
is the shortest distance.

Then, what changes should we bring to our program?

1. Declare annt arraydi st ance[ 100] on line 6.
2. Add the statementi st ance[i] = distance[u] + 1; afterline 32.
3. Finally, the shortest path between 'src' and 'desite value ofii st ance[ dest] .

Finding the most distant node from the sour ce node

The lastly queued node is the most distant nod®a fitte source node. So, the value of the variable
after finishing the BFS is our most distant nodenfrthe source node. However, in our programs
declared as a local variahlaside the do- whi | e loop. To get its valuefter the loop, we need to declare it
outside the loop.

Printing the (shortest) path from sour ceto destination

To print the path from a source to a destinatiomneed to keep track of the intermediate nodesdmtw
those two nodes. We can use an array to storerév@ops node of the current node. Thus we can ghtaim
of nodes between the source and destination noolesthat array.

To store the previous node in an array, we can Igimigclare a global arrayr ev[ 1001, and add the
statemenprev[i] = u; afterline 32.

Now, how do we print the path from that array? Tnev array for the graph oFigure 4 would
somewhat look like the array Figure 6. Here, we have tbacktrack from destination to source. So, to print
forward from source to destination, we can use a recutierthe following:

110

13 void print(int node) {

14 if (node == 0) 2
15 return; 3
16 print(prev[node]); 4
17 printf("%l -> ", node); )

18 } Figure 6

Finding a cyclefrom sourceand printing itspath

For any node, if we can find out that there is dgedrom it to the source, we can easily say that a cycle
exists from source to that node. Now, to print pla¢h, simply print the path from source to that ened
described above, and then print the source noda.ajge code is somewhat like below:

57

58 for (int i = 1; i <= nodes; i++) {
59 if (graph[i][src] == 1) {

60 print(i);

61 printf("%l\n\n", src);

62

63 }

Detecting any cyclewithin an undirected graph

If we can detect that there exists an edge fromHIT& or GRAY node to a BLACK node, we can
easily say that a cycle exists from that BLACK neoal¢he WHITE / GRAY node.



Tegting agraph for bipartiteness y v

In graph theory, &ipartite graph (or bigraph) is a graph whose vertices can
divided into two disjoint setd andV such that every edge connects a vertay in
one inV.

First, we should color the source node with a paldr color— say BLUE.
Then, we have to color all the adjacent nodes witbther color— say RED. (igyre 7: gipartite Graph
Similarly, we’ll color all the adjacent nodes of REhodes as BLUE and ¢
the adjacent nodes of BLUE nodes as RED. While perfogntthis, if we
encounter any node which already has a similarraoldhis adjacent nod
then we can conclude that the graphnot bipartite. Else, after finishing

running the BFS, we can conclude tthe graphs bipartite.
Figure 8: Testing a graph for

To apply this logic, we need to defianother array of nodes containing Plpartiteness
another three colors say GREEN, RED and BLUE. If an adjacent node’s ttddGREEN, we’ll color if
with a different color than the current node (iBLUE if the color of current node is RED and \-versa).
If we find that the adjacent’s color is alreadyfeiént from the color of the current node, therpnablem;
we’ll simply skip. However, if we find that the adjent’'s color is already the same as thlor of the
current node, then we’ll stop and notify that tlmapd is not bipartite. The code for this might Idikde the

following:

31 if (parity[i] == GREEN) {

32 if (parity[u] == BLUE) {

33 parity[i] = RED;

34 } else {

35 parity[i] = BLUE;

36 }

37 } else if (parity[i] == parity[u]) {
38

39 }

Remember: Everytreeis bipartite Also, g/cle graphs with an even number of edgesbipartite.

Finding all connected componentsin a graph e °
In an undirected graph, eonnected component, or simply, component is a C\C/
maximal connected subgraph. There are three cathexdmponents Figure 9. . . ¢

Two vertices are defined to be in the same condecbenponent if there exists
path between themA graph is callecconnected when there igxactly one connectec

component. Figure 9: A graph with
three components

To find all the connected components in a grapit,frun a BFS from any noc After the BFS ends,
detect which nodes aren’t traversed (using colerdym any of those untraversed nodes, run anoth&:
Repeat the process until all the nodes have begarged. The number of times the BFS is run, timelbeu
of components the graph has.

Finding all nodeswithin one connected component

Simple — just run the BFS once!



DFS (DEPTH-FIRST SEARCH)

Generates spanning tree from a graph

In graph theory,depth-first search (DFS) is an uninformed

search that progresses by expanding the first child noti¢he =L

search tree that appears and thus going deepedesapmer until a / I\
goal node is found, or until it hits a node thag ha children. Then %)
the search backtracks, returning to the most recedé it hadn't é/[\,é\ é\lz
finished exploring. /T/ ot g
: @ G 10 11
Algorithm (Pseudocode) w
function dfs(vertice v) { Order in which the nodes are expanded
mark v as visited, L
pr eorder-process(Vv);
for all vertices i adjacent to v such that i is Class: Search Algorithm
not visited { Data Structure: Graph
de(i ) Time Complexity: O(|V|+|E])
’ Space Complexity: O(h) , whereh = length of
the longest simple path in
post or der - process(V); the graph.
} Optimal: No
Applications

Here are some algorithms where DFS is used:

» Finding connected and strongly connected components
Detecting biconnectivity (articulation points / etgrtex) and bridges
Topological sorting

Edge detection

Finding all-pair paths between source and destinatodes

Solving puzzles with only one solution, such as @saz

VVVYVY

Graph traversing using DFS (in C++)
Suppose, we have to traverse the directed grafiguoé 2. We’'ll start from the node 'src'.
Let's assume we have completed the preliminary ¢és#king input of the gragth

1 #include <stdio.h>
2
3 int nodes, edges, src;

4 int graph[100][ 100]; Q e sc=1

5

6 int main() {

7 printf("No. of nodes, edges, and source node? "); ° e e
8 scanf ("%l %l %", &nodes, &edges, &src);

9 for (int i = 1; i <= edges; i++) {

10 printf("Edge %l: ", i); e

11 int x, vy;

12 scanf ("%l %", &, &y); Figure 2: Traversing a graph using DFS
13 graph[x][y] = 1;

14 }

15 return O;

16 }

# An uninformed search algorithm is one that does not take into account the spegifture of the problem. As such, they can be
implemented in general, and then the same impleatientcan be used in a wide range of problems.drbwback is that most
search spaces (i.e., the set of all possible soisitiare extremely large, and an uninformed sg@stecially of a tree) will take a
reasonable amount of time only for small examples.

* Notice that we're taking the number of nodes gmiinWhy? Initially, we're taking a large matrixrf@00 nodes. But we need
the actual number of nodes in the graph when wéottyaverse it. We’'ll be using a loop, and it skdostop running when we’ve
completed examining the last node.



Now, let’s try to implement thBFS traverse algorithm:

18 void dfs(int node) {

19 col or[ node] = GREY;

20 printf("%l ", node);

21 for (int i = 1; i <= nodes; i++) {

22 if ((graph[node][i] == 1) && (color[i] == WHTE)) {
23 df s(i);

24 }

25 }

26

27 }

Checking whether a graph is connected

An undirected graph can be easily checked

connectivity. A directed graph, however, poses e e Q‘-Q
problem. So, if weconvert a directe graph into an

undirected graphthen we can easily find whether 1 ° e e 0-'0\-'6

graph is connected. To converdaectec graph into \

an undirected graphyst add reversed edgto all the e e
edgeg(figure 3(b)). Now, run DFS (or BFSfrom any

node. After the traversing finiseecheck whether (a) Directed graph (b) Undirected graph

: Fi :C i i hi i h.
there is any node marked WHITE. If no such node igure 3: Converting a directed graph into an undirected grap

can be found, thetine graph is connecte
Edgedetection

The most natural result of a depth first searcl gfaph (if it is considered as a function ratamta
procedure) is @panning tree of the vertices reached during the se Based on this spanning tree,
edges of the original graph can be did into four classes:

N Tree edge
%, Back edge
" Forward =d

“ Cross edge

1. Treeedge, edges which belong to the spanning tree i
Back edge, which point froma node to one of its ancestors.
3. Forward edge, which point from a node of the tree to one of /’
descendant&xcept the tree edc. '
4. Crossedge, which point from a node to another node whicnot

its descendant. Figure 4: The four types of edges defined by
a spanning tree.

It can be shown that if the graptundirected, then all of its edges are eitlieze edges or back edc

N

1. Treeedgedetection

Just run the DFSWVhenever we traverse an adjacent white (and in turn, its adjacent no( from a
source node, that's a tree edge.

5 Spanning tree: a spanning tree of @nnected, undirected graphG is a selection of edg I I *r—
of G that form a tree spanning every vertex. Tatevery vertex lies in the tree, but
cycles (or loops) are formed.

A spanning tree of a connected graph G can alstefieed as a maximal setedges of (

that contains no cycle, or as a minimal set of edbat connect all vertice ) , ®
Figure 5: A spanning tree (blue heavy

edges) of a grid graph.




2. Back edge detection

Consider the graph ifigure 6(a). If we try to traverse
from 3 to 1, we find that 1 is already GREY. Sowé can
find a GREY node while traversing, then there’saakbedge.

3. Forward and cross edge detection

Consider the graph iingure 6(b). After getting back to 1,
we find that another path exists from 1 to 3. H8res already (a) Backedge  (b) Forward edge  (c) Cross edge
GREY. According to our just-taken decision, thigedhould Figure 6: Back, forward and cross edge detection.
be a back edge. But is it in fact?

So, we might introduce another color — BLACK. Whesgrewe finish searching all the adjacent nodes of
a particular node, we mark it as BLACK. Thusfigure 6(b), when we try to traverse from 1 to 3, we find it
as BLACK. So, if we can find a BLACK node while ¥iasing, then there’s a forward edge.

However, there lies a problem with this decisiort’'s change the@ppearance of the graph irfigure
6(b) so that it looks like the graph frgure 6(c). Now, while infigure 6(b) 2 was 3’s ancestor, filgure 6(c),
2 is not 3’s ancestor. So, in that case, the efg8)(is a cross edge rather than a forward edgenBte,
however, that the graphs are the same.

Therefore, finding a BLACK means there might béneita forward edge, or a cross edge. Then how
would we differentiate between the two?

Useof timein DFS somree
. . . . . \ g r

While traversing a graph using DFS, we can sehuiist) time @ @
(or discovery time) and a finishing time for eacbda. This
technique will help us solve the edge detectiorblems as well @ @
as all the other problems following those.

The technique is fairly simple — while running DFEst set @ @
the starting time of a node whenever we discoveant set the Figure 7: Using time in DFS

finishing time when we are sure that all its adjgagodes have

. . . .. 1|6
been discovered. An example is giveriigure 7. | 116
So, how would you program it? Simple — take a dloba 205 )
variable — sayti ne — and initialize it with1. Take two global 45 |
arrays — e.gstart _ti me andfi ni sh_ti me — where the starting 14

and finishing time of all the nodes will be stor&lhenever a
node is discovered, we set the current time astad time and
increment the value of time. After ther loop in the code for
DFS, i.e., when working with that node is done, set the current time as its finishing time and agai
increment the value of time.

(a) Forward edge (b) Cross edge

Figure 8: Forward and cross edge detection.

Now, let’s try to solve the problem of detectingviard and cross edges. Consitigure 8 (a) and(b).
The graphs are the same as thoskgure 6 (b) and(c). In case ofigure 8(a), we find that the discovery
time of 1 isless than the discovery time of 3. So, 3 is 1's desaenhdHence, the edge (1, 3) is a forward
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edge. On the other hand, in casefigire 8(b), we find that the discovery time of 2 gseater than the
discovery time of 3. So, 2 is not an ancestor @l hence the edge (2, 3) is a cross &dge.

Summing up the edge detection techniques, we cacluate the following:

Let, (u, v) is an edge.

= |f(color[v] == WHI TE), then (i, v) is atree edge.
= |f(color[v] == GREY), then (i, V) is aback edge.
= |f(color[v] == BLACK), then (i, v) is aforward or cross edge.

e |If(start_time[u] < start_time[v]), then (, v) is aforward edge.
e |If(start_time[u] > start_time[v]), then (i, v)is across edge.

Detecting cyclesin adirected graph

If we can detect a back edge while running DFSy thie can say that the graph has a cycle. If a graph
does not contain any cycle, then it is callecheytlic graph.

Theorem: An undirected graph isacydliciff’ a DFSyields no back edges

After running DFS, if no back edges can be fouhdntthe graph has only tree edges. (As the graph is
undirected, therefore, there will be no forward/cross edgesdnly tree and back edges.) Only tree edges
imply we have a tree or a forest, which, by deifomf is acyclic.

Topological Sort

Topological sort of a directed acyclic graph (DAG) G = (V, E): adar order of vertices such that if
there exists an edga, (), thenu appears beforein the ordering.

The main application of topological sort is in sg¢hkng a sequence of jobs. The jobs are represdryted
vertices and there is an edge frano y if job x must be completed before jglran be done. (For example,
washing machine must finish before we put the e@stto dry.) Then, a topological sort gives an oider
which to perform the jobs.

Another application of topological sort is in openedit system, where courses are to be taken ¢erpr
such that, pre-requisites of courses will not @eaty problem.

The algorithm for applying topological sort is qugimple Just sort the nodes in descending (or non-
increasing) order according to their finishing tinW#hy? Because, in DFS, the deepest node is fidishe
processing first. Then its parent is finished pssogg. Thus, we can say that the deepest node comst
after its parent.

So, how do we write the code for sorting the nodessy! Just createi|12
an array — e.g.op_sort — and whenever you blacken out a node (or, in a a
other words, assign its finishing time), insert tiwge into it. Now, after
the DFS finishes, you get an array with nodes tegeaccording to the 4111 ° e e
increasing order of their finishing time. How? Tiirst time you assign a
node its finishing time, the finishing time is ohet lowest value.
Eventually, you end up assigning the highest fimghtime to the last Frigure 9: Graph for topological sort.
blacked out node. Thus, you get an array of nodesried according to the increasing order of their
finishing time. Now what? Just print the array @verse. That’s the topologically sorted list.

2|3

5|8 6|7

® Note that the result of DFS might vary accordiadraversal algorithm. If the graph figure 8(a) is traversed as 1-2-3, then (1,
3) would be its forward edge. On the contraryhié graph is traversed as 1-3-2, then (2, 3) woeldtdcross edge. For this
reason, in most applications of DFS, we don’t needistinguish between a forward edge and a crdgs.e

"i.e.,if and only if.
11



Unique Topological Sort

The above trick for applying topological sort isdi But how can we find whether the topologicat sér
a particular graph is unique or not? For exampleoliogical sort of the graph Figure 9 is not unique. The
sort might be any of the followings:

a.1-4-5-3-6-2
b. 1-2-4-3-6-5
c. 1-2-4-5-3-6

One thing we may do is to run the DFS algorithmtipld times while choosing different paths each
time. If we get multiple topological sorts, then wa&n conclude that the sort for the graph is naquen
However, coding this is complex and inefficient.efé is another algorithm for finding topologicalrtso
usingin-degree of edges which is efficient to find out whether the soruisique.

In this algorithm, we first determine the in-degideall the nodes. Now, the node with the lowest in
degree must comgefore a node with a greater in-degree than that. Wehaitnode as the first node in the
topological sort order. Then, we have to find dgaaent nodes. At least one of them must conmeediately
after the first node. To find the next node in the soder, we simply decrement the in-degree of thet fir
node’s adjacent nodes by 1 and then repeat théopresteps again. We repeat these steps tiones where
n is the number of nodes in the graph.

A formal approach of describing the algorithm id@kws:

1. Take an array — named, for examplejegr ee — and put the in-degree of all the nodes in it.

2. Take another array — named, for exampte ed — where the nodes will be kept in topological sort
order. The values in this array after the algorifimshes are the final result.

3. From thei ndegr ee array, determine the node with tlusvest in-degree. Put the node in thert ed
array.

4. Set the in-degree of this nodectdn thei ndegr ee array.

5. Decrement the in-degree of the adjacent nodesohtide by 1 in thendegr ee array.

6. Repeat steps 3 to 5 fortimes, whera is the number of nodes in the graph.

Now let’s return to our concerned problem — howoaa determine whether a topological sort is unique.
Easy! While running the above algorithm, at stepf 3ye detect that there are more than one lowest in
degree values, then we can easily conclude thabfmogical sort isiot unique

Articulation Point / Cut-Vertex and Biconnected Components

The articulation points or cut-vertices of a graph are those nodes, deleting which catlegraph to
become disconnected. If a graph contains no aatioul points, then it idiconnected. If a graph does
contain articulation points, then it is useful mitsthe graph into the pieces where each pie@nsaximal
biconnected subgraph calledbi@onnected component.

So, how do we find the articulation points? One wsato delete a node and then run BFS/DFS to see
whether the graph is connected. If the graph iscoonected, then that deleted node is an artiomatoint.
But this brute-force method is highly inefficient.

Here is an efficient algorithm. We’ll observe hoar Bbove the parent a child can go. If we find tiat
child of a particular parent can go higher thangheent node, then we can conclude that the pacsid is
an articulation point.

12



So far, so good. But how would we code this? Frdma t1|(1 1 Q
algorithm, we find that we need to find out whetheay child of a ’
parent can go above it. Therefore, we need to kaef of how far 21(2,2)
above a node can travel. Let's take an array ofesoalhere the
value of a particular node will represent the maximancestor 3|3, 2) G
node that can be reached by it. Let’s call thiayarow. Why? We'll
see later. 41(4,2) (D)~

Discovery Time |
(Initial low value,
Updated low values...)

Now, while running DFS, we'll first set thdiscover time of a 5(5 5)
node as itdow value, because the node can go from itself tdf.itse
Now, while backtracking, when we’ve visited all tadjacents of a
parent, we have to update the low value of it. H&M&Il take the low values of all its children. Wiedlso
take the discovery time of all the nodes it hasekledge with. And we already have the discoveng tof
that node. Then, the updated low value of the pammuld be thdowest low value among all these low
values. In other words, if the parent node &nd its child or back-edged nodenisthen:

61(6,6)

Figure 10: Articulation Point.

d[v]
low[v] = min. { lowest d|w]|among all back edges (v,w)
lowest low|w]| among all tree edges (v,w)

Now, if the low value ofiny of the parent’s children is greater than or eqodhe discovery time of the
parent, then that parent is an articulation pdmbther wordsa parent nodey will be an articulation point
if, for any nodew connected witlv as aback edge or tree edge,

low(w) >= d[V]

Note that to update the low value, we're taking litveest of all the other values. That's why we're
calling the array ow.

Note further that, when doing the actual coding,need to perform the checkimgfore updating the
low value of the parent.

Now, there lies a problem. When we compare thevalue ofB with the discovery time of (figure
10), we will get thatA is an articulation point. But in fact, it isn’toSasA is the root of this tree, it needs to
be handled separately. A root might or might notibarticulation point. For example, the roofigure 10
is not an articulation point, whereas the rootigure 9 is. Actually, a root is an articulation poitit it has
two or more childrenTo determine whether a root is an articulation poie should run a DFS from the
root, and after traversing the first path from tbet, if there is any WHITE node left, we can ca# that
the root is an articulation point.

Bridge
A bridge is an edge deleting which causes the giapecome disconnected.

Any edge in a graph that does not lie on a cycle lisidge.Bridges either end in e
articulation points or in dead-ends. As an exanmiplé&e graph ofigure 11, (C, D) and G Q G
(D, E) are bridgesC andD are articulation points, whilg is a dead-end. Note thah, ( Figure 11: Graph with
B), (A, C) and B, C) are not bridges as they lie on the cy&RC. bridges marked.

13



SCC (Strongly Connected Components)

A directed graph is called strongly connected éréhis a path froneach vertex in the graph tevery
other vertex.

The strongly connected components (SCC) of a didegraph are its maximal strongly connected

subgraphs.
AR ATE a, bR e @ewe @ @361 SCC IR aF @ 91 @Ferid b, e
ISR ST AW, b (F e, anEire? ST AW, UF e T a, bgine Awew I ﬂm

asgel, (f, g) == (c, d, h)-e wBr SCCi
So, how can we find the SCCs? Follow the stepsiabelo Figure 22: Graph with strongly
connected components marked.

1. Run DFS from any node (for exampleto compute the finishing time of all the nodes.

2. Reverse the direction of the edges.

3. Now run DFS again from the no@éose finishing timeisthe lengthiest. (You can find it from the
topologically sorted array populated in step 2).

4. While running the second DFS, output the nodekerdFS tree. These nodes comprise an SCC.

5. If there are still unvisited (i.e., white colora)des, then repeat steps 3 and 4 from the WHITE nod
whose finishing time is the lengthiest; until thare no more WHITE nodes.

el - @ @
Note that a node itself is a strongly connected mament if nowhere cannot be ’
gone from that node. For example Figure 12, nodes 1, 2 and 4 comprise an SCC) ° @

Again, only node 3 is also an SCC.
Figure 12

14



DIJKSTRA'S ALGORITHM

Finds single-source shortest path in weighted graph

The problem with BFS is that it won't produce cotreesult when applied to a

weighted graph. Consider the graph figure 1. BFS would say that (1, 3) is the

shortest path. But considering weight, we find tflgt 2, 3) is the shortest path.
Therefore, how would we calculate shortest patmfeoweighted graph?

5

Dijkstra comes to the rescue! Dijkstra’s algoritisna greedy algorithm where’ €7@ 1 mitation of 87

each time we try to take the route with the lonwastt (or weight). So, whenever we find more thae on
adjacents of a node, we’ll take the adjacent nodese cost is the lowest and proceed.

First, let's take an arrayost where the cost of the nod&sm the source node would be placed. Now,

let's set the cost of the source node as 0, bedhaseost to visit the source node from itself.is\@ll, let’s
set the cost of all the other nodesas/Nhy? Because, initially, we're considering tha ean ganowhere
from the source node. When we’ll discover that eelble to go somewhere, then we’ll update the wikt
some other values.

Now, follow the steps below:

1. Put all the nodes into a priority queue and satrttaccording to theon-decreasing order of their
cost.

2. Pop the front node from queue.

3. For all adjacent nodef v, update the cost ofif cost[v] + graph[V][i] < cost[i]; i.e., the cost from
the source to nodgvia nodev) is less than the cost of nodgvia some other route).

4. Repeat steps 2 and 3 until the queue is empty.

If we save the previous node while updating intother array, then we’ll be able to find the shdrtes

path of all the nodes from the source node usiagdiray.

Initial
Step 1
Step 2
Step 3
Step 4
Step 5

Step 6

Note: Dijkstra’s algorithmmight fail if negative cost is used.

1 2 3 4 5 6 1 2 3 4 5 6 123456
cost[ 0 [ = [ e [ e~ T = T = Jaquee[1]2]3]a[5]6] Prev[TT]T]
cost [ 0 | 04555 | = | 0+9-9 | = | = | quewe[2]4a]3]s5]6] ] prev[oa[ ]
cost [0 | 5 [ 5+10=15] 5+3=8 | = | = | queue[4]3]5]e] [ | prev[o[i]2[2[]]
cost [0 | 5 | 15 | 8 ] 8+2=10 | = | queue[s5]3]s] | [ | prev
cost [ o | 5  [10+4-=14] 8 | 10 [ 10+9-19 | queue[3[6] | [ [ | prev
cost | 0 [ 5 [ 14 ] 8 [ 10 [ 14+2-16 ] queve[s] [ [ [ [ | Prev [o[als[2[4]3]
cost [0 [ 5 [ 1 [ s [ 10 [ 16 ] queve[ ] ] [ [ [ ] Prev[lBpREf

Figure 2: Dijkstra’s Algorithm.
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The run-time complexity of Dijkstra’s algorithm is:
» O(n?) — when we usarray instead of heap.

» O(E logV) — whenmin-heap is used to find the minimum element frafkY. (KEY[V] is the
minimum cost of any edge connecting a vesd® a vertex in the tree being generated from the
source node.)

» O(E + VlogV) — whenfibonacci-heap is used to find the minimum element fric&Y.

16



BELLMAN-FORD ALGORITHM

Finds single-source shortest path in weighted graph and detects negative cycles

If negative cost is used, Dijkstra’s algorithm
might fail. As an example, for the graph fodure 2
1(a), Dijkstra would produce correct result, wherea
for the graph offigure 1(b), if would get into an
infinite loop when printing shortest path.

2
. . (a) 1 2 3 4 5
.If the graph does contain a cycle of negative final cost [6]aa e 3]4]
weights, Bellman-Ford, however, can only detect orev[T]3 25 ]3]
this; Bellman-Ford cannot find the shortest patt th [——;
does not repeat any vertex in such a graph. Infinite loop
(b)
Bellman-Ford is in its basic structure very Figure 1: Dijkstra’s Algorithm with negative cost.

similar to Dijkstra's algorithm, but instead of
greedily selecting the minimum-weight node not yetcessed to reldxit simply relaxes all the edges, and
does this\{| — 1 times, whereV| is the number of vertices in the graph. The igpes allow minimum
distances to accurately propagate throughout taghgisince, in the absence of negative cyclesshbdest
path can only visit each node at most once.

The algorithm is as follows:

for each vertex v in vertices:

if vis source then v.distance := 0
el se v.distance := infinity
v. predecessor := nul

for i from1l to size(vertices)-1:
for each edge uv in edges:
u := uv.source
v := uv.destination
if v.distance > u.distance + uv.weight:
v.di stance : = u.distance + uv.weight
v. predecessor := u

for each edge uv in edges:

u = uv.source

v = uv.destination

if v.distance > u.distance + uv.weight: d[v] > d[u] + w(u, v)
error "Graph contains a negative-wei ght cycle"” Fig. 2: Negative Cycle

In words, we have to update all the nodes’ cos{[f4r- 1) times. Then, we have to perform the checking
for negative cycles for each edge.

Bellman—Ford runs in O(|-E|) time.

Note: Negative cycle is guaranteechdgative weight undirected edge can be found. For example:

OO0
® Relaxing an edgel(, V) means testing whether we can improve the shquthttov found so far by going through
17




SINGLE-SOURCE SHORTEST PATHS IN DAGS

So far we've seen algorithms to solve si-source shortest path problem U,
undirected graphs. What aboudirected graphs, or, more precisely, directadyclic
graphs (as shortest path cannot be calculateddoeeted graph containing cycle

The idea is to topologically sort the vertices bé tgraph and relax the edc 4
according to the order given by ttopological sort. Br each vertex, we relax ea X
edge that starts from that vertex.

The running time of this algorithm is V + E).
Note that shortest paths are well defined in a De&Gnegative weight) cycles cannot e
Example

In the following graph, we have to find the sharfegths from nods. Let, the topologically sorted ord
of the nodes isr — s — t — x — yz—=We initialize the costs of all nodes @s- except the source node,
which we initialize to O.

18



FLOYD-WARSHALL ALGORITHM

Finds all-pair shortest paths in weighted graph

The FloydWarshall algorithm compares all possible pathsubhothe graph between each pair
vertices.Here, all we do is to find out the shortest pattwieen two nodei andj via all the nodes (1, 2, ...,

n).
The FloydWarshall algorithm is an example of dynamic prograng.

Algorithm

/* Assume a function edgeCost(i,j) which returns the cost of the edge fromi to j
(infinity if there is none).
Al so assunme that n is the nunmber of vertices and edgeCost (i,i)=0

*/

int path[][];

/* A 2-dinmensional nmatrix. At each step in the algorithm path[i][j] is the shortest
path from i to j wusing internediate values in (1...via). Each path[i][j] is
initialized to edgeCost(i,j).

*/

procedure Fl oydWarshall ()
for via =1ton
for each (i, j) in (1...n)
path[i][j] = mn ( path[i][j], path[i][via] + path[via][j] );

The time complexity of this algorithm is V/[).

Behavior with negative cycles

For numerically meaningful output, Flo-Warshall assumes that there are no negative cficldact,
between any pair of vertices which form part of egative cycle, the shortest path is not -defined,
because the path can be arbitrarily negative). Nlesiess, if there are negative cycles, F-Warshall can
be used to detect them. A negative cycle can kecthet if the path matrix contains a negative nunalarg
the diagonal. Ihath[i][i] is negaWwe for some vertei , then this vertex belongs at least one negative
cycle.

Example
4 5 % 2 3 4 s
w(-4] 110[3|8]|=|4
1 2l 0| Qe 1|7
wlow]| 3le|4]0|x]|w
O|x| 4[25|-5]0]|-2
610 5[x|=|=|6|0

G bE

t2 s 4 1. 2 3 4 5
103|844 0[3|8[4(-4| |o[3]|-1]4]4 1[ol113]2 -4
2 | Ol |17 w| Ole |17 3/0(-4(1]-1 213101-4111-1
3|»[4]0|5 |11 = 410|511 714/0|5|3 371410153
sl2/5|-5[0[-2] [2]-1]-5|0]-2] [2]-1]-5]0]-2 2145002
5 w|w|=|6]0 w|w|=|6]0 851607 5185111610




PRIM’S ALGORITHM

Generates minimum spanning tree (MST) (using node-based approach)

In case of a weighted graph, there mighseveral spanning trees. But if we need to findnir@mum
spanning tree, i.ethe spanning tree which has the minimum total aesthave to u¢ Prim’s or Kruskal’s
algorithm.

The main idea oPrim’s algorithm is to grown MST from the current spannintree by adding the
nearest (lowest weightjertex and the edge connecting the ne (lowest weight vertex to the MST. The
algorithm may be presented informally as follc

Select a vertex to be a tree-node.
while (there are notree vertices)
if there is no edge connecting a tree node withr-tree node
return “no spanning tree”.
Select an edge of minimum weight between a tree aodea no-tree nod.
Add the selected edge and its new vertex to th.

}

return tree.

The runtime complexity of Prim’s algorithm the same as that of Dijkstra’s algorithm. In { Prim’s
algorithm is similar to Dijkstra’s algorithi— the only difference is that Dijkstra’s algorithm ynar may not
produce a spanning tree, whereas Prim’s algm always produces a spanning t

Example

Description

This is our original weighted graph. The numberarnée arcs indical
their weight

Vertex D has been arbitrarily chosen as a starting pointtiéés A, B, E
andF are connected tD through a single edgA is the vertex nearest {o
D and will be chosen as the second vertex alongthvéhedgeAD.

20



The next vertex chosen is the vertex neareeither D or A. B is 9 away
from D and 7 away fronA, E is 15, andr is 6. F is the smallest distance
away, so we highlight the vertF and the ar®F.

The algorithm carries on as above. VerB, which is 7 away fronA, is
highlighted

In this case, we can choose betwC, E, andG. C is 8 away fronB, E is
7 away fromB, andG is 11 away fronf. E is nearest, so we highlight t
vertexE and the ar&E.

Here, the only vertices available :C andG. C is 5 away fronE, andG
is 9 away fronE. C is chosen, so it is highlighted along with the EC.

Vertex G is the only remaining vertex. It is 11 away frr, and 9 away
from E. E is nearer, so we highlight it and the EG.

Now all the vertices have been selected an minimum spanning tree is
shown in green. In this case, it has we39.
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KRUSKAL'S ALGORITHM

Generates minimum spanning tree (MST) (using edge-based approach)

The main idea of Kruskal’s algorithm is to grow IS T from a forest of spanning trees by adding
smallest edge connecting two spanning t A formal algorithm along with complexity analysis as
follows:

MST- Kr uskal (G w)
01 A - O
02 for each vertex v O VG do
O(V){ 03 Make- Set (V)
O(Elog) 04 sort the edges of E by non-decreasing weight w
O(E) 05 for each edge (u,v) O E, in order by non-decreasing weight do
{ 06 if Find-Set(u) # Find-Set(v) then
o(V)

07 A« AO{(uyv)}
08 Uni on(u, v)
09 return A

The overall complexity of the algorithm is: VE).
The operations used in the above algorithirdescribed as follows:

» Make-Set(x) — creates new set whose only membex.

> Union(x, y) — unites the sets that contéx andy, say,S, andS, into a new set that is the uni
of the two sets.

» Find-Set(x) — returnsa pointer to the representative of the set comtgix.
The algorithm(from coding point of view is as follows:

1. Sort the edges in ascending or

Now begin choosing the lowest cost ed

3. However,while choosing edges, we should pay attention abdicycle is not forme« To prevent
forming cycles,we need to keep track whose parent is whdnitially, all the nodes’ parents a
their values, themselvedlow, while choosing edges, we’ll check whether parents of the two
nodes belonging to the edgee the samelf so, then we’ll discard that edge. But if they're tize
same,then we’ll replace the higher parent value with bwer parent valu However, when we
update the parent valwd a particular node, we need to updat all othe' adjacent nodes’ parent
values with its parent value.

4. The process continues until all the edgeve been visited.

N

Example

This is our original graph. The numbers near tlos ardicate their weigh
None of the arcs are highlight
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AD andCE are the shortest arcs, with length 5, AD has been arbitrarily
chosen, so it is highlighte

CE is now the shortest arc that does not form a cyuaih, length 5, so it i
highlighted as the second ¢

The next arc,DF with length 6, is highlighted using much the s
method

The nex-shortest arcs arAB andBE, both with length 7AB is chosen
arbitrarily, and is highlighted. The aBD has been highlighted in re
because there already exists a path (in green)ee@B andD, so it would
form a cycle ABD) if it were chosen.

The process continues to highlight the -smallest arcBE with length 7.
Many more arcs are highlighted red at this stageBC because it would
form the loopBCE, DE because it would form the locDEBA, andFE
because it would forrFEBAD.

Finally, the process finishes with the EG of length 9, and the minimu
spanning tree is four
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