

DBMS: AN INTERACTIVE TUTORIAL

 Organized & Prepared By

Sharafat Ibn Mollah Mosharraf

12
th

 Batch (05-06)

Dept. of Computer Science & Engineering

University of Dhaka

Table of Contents

INTRODUCTION TO DATABASE AND DESIGNING RELATIONAL DATABASES ... 1

DATABASE: WHAT IT IS AND WHY IT IS NEEDED .. 1
DESIGNING A DATABASE .. 1
EXAMPLE DATABASE DESIGN .. 5

ENTITY-RELATIONSHIP MODEL ... 7

E-R MODEL: WHAT IT IS .. 7
BASIC CONCEPTS ... 7

Entity Sets and Attributes ... 7
Types of Attributes .. 8

Relationship Sets .. 8
CONSTRAINTS .. 9

Cardinality Constraints / Mapping Cardinalities / Cardinality Ratios .. 10
Participation Constraints ... 11
Cardinality Limits .. 11

WEAK ENTITY SETS ... 11
Discriminator / Partial Key of a Weak Entity Set .. 12
How the primary key of a weak entity set is formed .. 12
Placement of descriptive attributes in a weak entity set ... 12
Participation of weak entity sets in relationships ... 12
Weak entity sets – should they be designed as multivalued attributes? ... 13

SPECIALIZATION AND GENERALIZATION ... 13
Specialization ... 13
Generalization .. 13

REDUCTION OF E-R SCHEMAS TO TABLES ... 14
Strong Entity Sets ... 14
Weak Entity Sets ... 14
Relationship Sets .. 14

One-to-One Relationship ... 14
One-to-Many Relationship ... 14
Many-to-One Relationship ... 14
Many-to-Many Relationship .. 15

Composite Attributes .. 15
Multivalued Attributes .. 15
Generalization .. 15

E-R DIAGRAM SYMBOLS AT A GLANCE ... 16

DML: DATA-MANIPULATION LANGUAGE ... 18

DML (DATA-MANIPULATION LANGUAGE): WHAT IT IS .. 18
QUERY LANGUAGE .. 18
THE SELECT OPERATION / STATEMENT ... 18
RELATIONAL ALGEBRA ... 21

Fundamental Relational Algebra Operations .. 21
The Selection Operation .. 21
The Projection Operation ... 21
Composition of the Relational Operations ... 21
The Union Operation ... 22
The Set-Difference Operation .. 22
The Cartesian-Product Operation ... 23
The Rename Operation .. 24

Additional Relational Algebra Operations ... 25
The Set-intersection Operation .. 26
The Natural Join Operation .. 26

Extended Relational Algebra Operations ... 27
The Outer Join Operation ... 27
Generalized Projection ... 28
Aggregate Functions .. 28

MODIFICATION OF DATABASE ... 31
Insertion ... 31
Deletion .. 31
Update .. 32

INDEXING AND HASHING .. 33

THE PROBLEM ... 33

BASIC CONCEPTS ... 33
Types of Indices .. 33
Index Technique Choosing Factors .. 33

ORDERED INDICES ... 34
Primary / Clustering Index ... 34
Secondary / Non-Clustering Index ... 34
Index-Sequential Files ... 34
Contents of an index record / entry .. 34

Types of ordered indices .. 34
Dense Index .. 35

Dense index for primary indices .. 35
Another implementation of dense indices .. 35

Sparse Index ... 35
Comparative Analysis of Dense and Sparse Index ... 36

A good trade-off... 36
Why this trade-off is good ... 36

Multi-Level Indices ... 36
The problem with single-level indices ... 36
Solution to this problem ... 36

Secondary Indices .. 37
B+

 TREE INDEX .. 37
The Problem with Indexed-Sequential File Organization .. 37
How B+ Tree Index Solves the Problem ... 37
Structure of a B+ Tree .. 37
Operations on a B+ Tree .. 38

Adding Records to a B+ Tree ... 38
Deleting records from a B+ Tree .. 40

B+ Tree File Organization .. 41
B-TREE INDEX ... 42

Advantages of B-Tree ... 43
Disdvantages of B-Tree .. 43

HASHING ... 43
The Problem with Sequential File Organization and How Hashing Solves It ... 43
Hash File Organization .. 43
Manipulation of Records in Hash Files.. 43
Hash Functions .. 43

Distribution Qualities for Choosing a Hash Function .. 44
Some Examples Illustrating These Qualities.. 44
How Hash Functions Should be Designed ... 44

Handling of Bucket Overflows ... 44
Causes of bucket overflows ... 45
Reducing bucket overflows .. 45
Handling bucket overflows .. 45

Hash Indices ... 46
Static and Dynamic Hashing .. 46
Drawbacks of Hashing ... 47

COMPARISON OF ORDERED INDEXING AND HASHING .. 47
MULTIPLE-KEY INDICES .. 48

Problem with Multiple Single-Key Indices ... 48
Advantages of Using Multiple-Key Indices .. 48

INDEX DEFINITIONS IN SQL ... 49
Creating an Index ... 49
Removing an Index ... 49

Meanings of Special Formatting used

Formatting Meaning Example
Bold text Technical terms in Database tuple, one-to-many
Italic text Attribute names, table names account, customer-name

Dark red colored text Topic heading Designing a database

Dark red colored text and objects
within a diagram or table

Newly added item compared to
previous diagram or table or text

Blue colored text Points to be remembered What we’ve learnt from here is that, when …

Blue colored text under a figure Figure Caption Figure 1: …

Red colored text Conclusion To sum-up, we have …

1

Introduction to Database and Designing Relational Databases

Database: What it is and why it is needed

A database is a structured collection of records or data that is stored in a computer system.

Fine. But we can implement a database using files – we can write a program to put some information
into a file and when needed, we can retrieve that information. Then what’s the point of introducing a course
on databases???

Well, that’s true… But think about this situation: suppose your employer wants to manage a student
database. So you write a file containing students’ class, roll number and marks in each subject. Now, your
employer wants to get the list of students who have failed in a particular course. You write some code to
display the list. However, some time later, your employer wants to get the list of students who scored A+ in a
particular course. You again write some code to display the list. Now, once again, your employer wants the
total number of students in a particular class. You have to modify your program again. But how many times
are you going to take the pain of modifying your code?

If there were such a system which would instantly respond to your any kind of query within a database,
then that would make your life much comfortable. Here comes the Database Management System (DBMS).
This system provides you with an easy way to store and retrieve data and handle all your queries about those
data. There are much more functionalities of a DBMS, of course.

The objective of our course on DBMS is to learn how to implement, manage and use a DBMS.

At the preliminary level, for the time being, our main learning objectives are:

1. Designing a database (efficiently).
2. Using queries (efficiently) to store data into and retrieve data from a database.

Designing a database

Suppose, we have to design a database to manage a banking system.

First, we need to know what data we should need to manage a banking system. Let’s start with
information on customers. For each customer, we can record his name, street address, city, and most
importantly, his account number in the bank. These name, street address, city and account number are called
attributes or fields of customer.

Now that we’ve got our attributes, let’s try to establish a relationship among them. In this case, it’s quite
simple: a customer with a name ‘name’ lives in ‘street address’ in city ‘city’ and has an account number
specified by the attribute ‘account number’ in the bank.

In relational database model, we depict the above relation by placing the attributes into a box, which is
called a schema and giving a name to the schema, somewhat like the following:

customer
customer-name
customer-street
customer-city
account-number

The customer relation (also called a table) with two sample records (also called rows or tuples1) might
be as follows:

1 Tuple: (computing and mathematics) a finite sequence of objects; a structure containing multiple parts.

2

customer-name customer-street customer-city account-number
Somebody Mirpur Road Dhaka A-101
Anybody XYZ Road Khagrachhori A-104

A question may arise – why would we ever need to define a relationship among the attributes? Well,
we’ll find the answer soon…

Let’s take a closer look at the relation. A customer can live at only one street address and in only one
city at a time. So, we can say that the relationships of customer-name with customer-street and customer-city
are one-to-one. But as for account-number, we know that a customer might have more than one account at a
time; hence the relationship of customer-name with account-number is one-to-many.

So why does it matter? Suppose, the customer from above table named Somebody has three accounts at
the bank (A-101, A-102 and A-103). Then we can store that information into the table as follows:

customer-name customer-street customer-city account-number
Somebody Mirpur Road Dhaka A-101, A-102, A-103

Now, when we query for the details of the customer who has an account number of A-103, we have to
specifically search through each field for the account number; thus implementing our own search program
(as the built-in query naturally do not search into a field). So, the objective of DBMS cannot be achieved.2

However, we can implement a work-around for the problem by placing each account number in a single
record like the following:

customer-name customer-street customer-city account-number
Somebody Mirpur Road Dhaka A-101
Somebody Mirpur Road Dhaka A-102
Somebody Mirpur Road Dhaka A-103

But this makes several copies of the same data and thus wastes storage space:

customer-name customer-street customer-city account-number
Somebody Mirpur Road Dhaka A-101
Somebody Mirpur Road Dhaka A-102
Somebody Mirpur Road Dhaka A-103

To solve both the problems, let’s split up the table into two tables as below:

 account-number customer-name
customer-name customer-street customer-city A-101 Somebody

Somebody Mirpur Road Dhaka A-102 Somebody
 A-103 Somebody

customer account

Now, when we query for the details of the customer who has an account number of A-103, the account
table will be queried first. From the account table, it will be found that a customer named Somebody holds
that account number. Next, the details of the customer will be queried from the customer table using that
customer name ‘Somebody’. Thus, we’ll be able to easily and successfully retrieve all the necessary data
using a DBMS.

In the two tables, the field customer-name is acting as a link between records.

2 There are some rules for designing efficient databases, one of which is “each field must contain atomic data” – i.e., data

which represents only one thing, not several things.

customer-name

customer-street

customer-city

account-number

Figure 1: Relationships among the attributes of customer table.

Legend

One-to-one
One-to-many

Duplicate
data

3

What we’ve learnt from here is that, when a one-to-many relationship exists – suppose – from field A to
field B, we’ll create two tables: in the first one, we’ll keep the field A, and in the second one, we’ll place the
field B and also the field A.

This is the reason why we need to define relationships among the attributes – so that we can distribute
the attributes among different tables when designing and implementing a database.

Well, if you haven’t figured out yet, there is a problem with the above solution. We all know that it is
possible that any two customers might have the same name. Consider the following situation:

customer-name customer-street customer-city account-number customer-name
Somebody Mirpur Road Dhaka A-101 Anybody
Somebody Aga Kha Road Bogra A-102 Anybody
Anybody XYZ Road Khagrachhori A-103 Somebody

customer account

From account table, we find that account A-103 is owned by Somebody. Now, from customer table, how
can we determine whether this Somebody is the one living in Dhaka, or the one in Bogra?

It seems that we need to use such a linking field in account table, which can uniquely identify a record in
the customer table. So, which field in customer table uniquely indentifies a record therein? There might be
several customers who have the same name or live at the same street or even in the same city. Therefore, a
value may appear more than once in any of the fields.

In such cases where none of the attributes uniquely identifies a record in the table, we have to use a field
– usually named id – in which unique integer values are assigned for each record. Thus, the above two tables
become:

customer-id customer-name customer-street customer-city account-number customer-id
1 Somebody Mirpur Road Dhaka A-101 3
2 Somebody Aga Kha Road Bogra A-102 3
3 Anybody XYZ Road Khagrachhori A-103 1

customer account

Now we can definitely say that the owner of the account A-103 is a customer named Somebody who
lives in Dhaka (and not in Bogra).

A field which uniquely identifies a record in a table is called a primary key . In customer table,
customer-id is a primary key. Again, a primary key which is used as a field in another table for linking (i.e.,
relationship establishing) purposes, is called a foreign key. In account table, customer-id is a foreign key.
Primary key and foreign key attributes are usually underlined to express their nature.

customer-id customer-name customer-street customer-city account-number customer-id
1 Somebody Mirpur Road Dhaka A-101 3
2 Somebody Aga Kha Road Bogra A-102 3
3 Anybody XYZ Road Khagrachhori A-103 1

customer account

Note that we can also define a primary key for the account table, and it would be the account-number
field.

So what we’ve learnt from this section is that we need a primary key to uniquely identify a record in a
table, and we need to uniquely identify a record in a table to properly establish relationship among attributes;
thus design an efficient database. However, primary key is also used to prevent inserting records which
contain duplicate primary key field values.

You might have started thinking, “Well, we’ve solved the problem quite well!” But you’re wrong! It’s
true that a customer might have more than one account at a time; but it’s also true that more than one

Primary Key Foreign Key

4

customer might own a single account (which we call joint-account). So, the actual relationship between
customer-name and account-number is many-to-many.

Now, what happens when the account number A-104 is owned by both the customers named Somebody
and Anybody? In the account table, we’ll either have to break the rule of atomic data, or we’ll have to keep
duplicate records. Both of the solutions are unacceptable.

So, again, let’s split up the table account into two tables:

customer-
id

customer-
name

customer-
street

customer-
city

 account
-number

 account
-number

customer-
id

1 Somebody Mirpur Road Dhaka A-101 A-101 3
2 Somebody Aga Kha Road Bogra A-102 A-102 3
3 Anybody XYZ Road Khagrachhori A-103 A-103 1
 A-104 1
 A-104 3

customer account depositor

What we’ve done here is, we’ve created a link table named depositor containing two foreign keys – each
of which refers to the corresponding primary key in the tables customer and account. Thus, from the
depositor table, we can say that the account number A-104 is owned by two customers whose ids are 1 and
3. And then from the customer table, we can find the details about those customers. The interesting fact is
that, the previous queries we’ve tried can also be executed easily from these tables with this configuration.
Why don’t you try those for yourself right now? ☺

[Umm… you might think that the account table seems to be lonely. However, when you’ll be designing
a database in a real situation, you’ll definitely find that the account table does not consist of only one
attribute. It will contain more than one fields, for example, balance – the amount of money currently
available under that account number.]

What we’ve learnt from this section is that when a many-to-many relationship exists – suppose – from
field A to field B, we’ll create three tables: in the first one, we’ll keep the field A and the fields related to it;
in the second one, we’ll place the field B and the fields related to it; and finally, in the last table, we’ll put
two fields from the previous two tables which are primary keys of those tables. The last table is just a
linking table.

To sum-up, we have to follow the following steps when designing a database:

1. Identify which attributes we need and place them into relevant tables.
2. Identify the primary keys of the tables.
3. Identify the relations among the attributes and modify table design accordingly.

Note that these steps are the primary steps for designing a database. There are other issues to consider
when designing a database efficiently. We’ll discuss those later.

customer-name

customer-street

customer-city

account-number

Figure 2: Relationships among the attributes of customer table.

Legend

One-to-one
Many-to-many

Primary Key Foreign Key Primary Key Foreign Key

5

Example Database Design

Let’s design a database for bank management.

First, we have to determine which information we need to manage the bank. Suppose we need the
following information:

1. Branch details – which might include branch name, branch city and total assets of that branch.
2. Customer details – customer name, his street address and the city he lives in.
3. Account details – the account numbers, which branches the accounts are from, their owners and their

balances.
4. Loan details – the loan numbers, which branches the loans are from, their borrowers and their

amounts.

Next, let’s try to figure out the relationships among these attributes so that we can determine which
tables we should need and which attributes should go to which table.

First, we’ve to figure out which attributes are not related to each-other. The bank details are not in any
way related to customer details. So, we can safely create two tables named – for example – branch and
customer. We can fill those tables with necessary attributes – branch-name, branch-city and assets in branch
table; and customer-name, customer-street and customer-city in customer table. Our database schema up to
this point should look like the following:

branch customer
branch-name
branch-city
assets

 customer-name
customer-street
customer-city

Now, the account details seems to contain attributes which relate to attributes in both branch details and
customer details. So, we can create a table named accounts and put the necessary attributes (account-
number, branch-name and balance) in it.

 branch account customer

branch-name

account-number
branch-name
customer-name
balance

customer-name
branch-city
assets

customer-street
customer-city

Note that the branch-name attribute in account table refers to the branch-name attribute in branch table.
So, branch-name should uniquely identify each record in branch table. In other words, branch-name should
be a primary key. Let’s assume branch-name is unique for the bank, i.e., all the branches of the bank have
different names. So, we can say that branch-name is a primary key in branch table, and hence, a foreign key
in account table.

Again, the customer-name attribute in account table refers to the customer-name attribute in customer
table. Let’s assume that customer names are unique (although in real situation it is not, let’s just assume it
for ease of our design), and thus customer-name is a primary key in customer table and a foreign key in
account table.

Note that when drawing a schema diagram for a database, the following rules are maintained:

� Each relation appears as a box, with the attributes listed inside it and the relation name above it.

� If there are primary key attributes, a horizontal line crosses the box, with primary key attributes listed
above the line.

� It is customary to list the primary key attributes of a relation schema before the other attributes.

� Foreign key dependencies appear as arrows from the foreign key attributes of the referencing relation
(or table – both denotes the same thing) to the primary key of the referenced relation.

6

Okay, let’s get back to our business. If we analyze more carefully, we can confirm that a customer may
have multiple accounts and a single account can be shared by multiple customers. So, the relationship with
customer-name and account-number is many-to-many. So, according to what we learned previously, let’s
split-up the account table and design a link table named – for example, depositor – like the following:

 branch account depositor customer

branch-name

account-number customer-name
account-number

customer-name
branch-city
assets

branch-name
balance

customer-street
customer-city

Now remains the loan details. It’s much like the account details in relationship’s point of view. We need
a foreign key branch-name and we know that the relationship between loan-number and customer-name is
many-to-many (as a customer may take multiple loans and a single loan can be jointly taken by multiple
customers). So, we can easily design a table named loan and a link table named – for example, borrower:

 branch account depositor customer

branch-name account-number customer-name
account-number

customer-name
branch-city
assets

branch-name
balance

customer-street
customer-city

 loan borrower

loan-number customer-name
loan-number branch-name

amount

So that’s our final database schema diagram for the bank management system.

We can represent a schema diagram in textual form, known as relation schema. The relation schema of
the above diagram is as follows:

Branch_schema = (branch-name, branch-city, assets)
Customer_schema = (customer-name, customer-street, customer-city)
Account_schema = (account-number, branch-name, balance)
Loan_schema = (loan-number, branch-name, amount)
Borrower_schema = (customer-name, loan-number)
Depositor_schema = (customer-name, account-number)

Note that in relation schema, no foreign relation is depicted. Further note that the schema names start
with uppercase letters.

So, the general form of a relation schema is:

S = (A1, A2, … , An), where A stands for Attribute.

A table filled with some records is called a relation instance. A relation instance r on a schema S can be
written as:

r(S) or r(A1, A2, … , An)

For example, to denote that account is a relation on Account_schema, we can write:

account(Account_schema) or account(account-number, branch-name, balance)

Note that relation instance names start with lowercase letters.

7

Entity-Relationship Model

E-R Model: What it is

The entity-relationship (E-R) data model perceives the real world as consisting of basic objects, called
entities, and relationships among these objects. It was developed to facilitate database design by allowing
specification of an enterprise schema, which represents the overall logical structure of a database. The E-R
data model is one of several semantic data models; the semantic aspect of the model lies in its representation
of the meaning of the data. The E-R model is very useful in mapping the meanings and interactions of real-
world enterprises onto a conceptual schema.

Basic Concepts

The E-R data model employs three basic notions: entity sets, relationship sets, and attributes.

Entity Sets and Attributes

An entity is a “thing” or “object” in the real world that is distinguishable from all other objects. For
example, each person in an enterprise is an entity. An entity has a set of properties. For example, a person
has a name, address etc.

An entity set is a set of entities of the same type that share the same properties, or attributes. The set of
all persons who are customers at a given bank, for example, can be defined as the entity set customer.

An entity is represented by a set of attributes. Attributes are descriptive properties possessed by each
member of an entity set. The designation of an attribute for an entity set expresses that the database stores
similar information concerning each entity in the entity set; however, each entity may have its own value for
each attribute. Possible attributes of the customer entity set are customer-id, customer-name, customer-street
and customer-city.

Each entity has a value for each of its attributes. For instance, a particular customer entity may have the
value 321-12-3123 for customer-id, the value Jones for customer-name, the value Main for customer-street,
and the value Harrison for customer-city.

For each attribute, there is a set of permitted values, called the domain or value set of that attribute. The
domain of attribute customer-name might be the set of all text strings of a certain length.

A database thus includes a collection of entity sets, each of which contains any number of entities of the
same type. The following figure shows part of a bank database that consists of two entity sets: customer and
loan:

customer

customer-street

customer-name

customer-city

customer-id

loan

amount loan-no

customer

customer-id
customer-name
customer-street
customer-city

loan

loan-no
amount

customer-id customer-name customer-street customer-city

321-12-3123 Jones Main Harrison

321-12-3124 Smith North Rye

119-15-4569 Hayes Dupont Harrison

123-45-6789 Adams Spring Princeton

customer

loan-no amount

L-17 1000

L-23 500

L-46 9000

L-12 30000

loan
Figure (c): Relation instances of customer and loan.

Figure (a): E-R diagram notations for entity sets and attributes.

Figure (b): Alternative E-R diagram notations.

8

Types of Attributes

An attribute, as used in the E-R model, can be characterized by the following attribute types:

1. Simple and Composite Attributes

Attributes that cannot be divided into subparts are called simple attributes.

For example, telephone-no, salary etc.

Attributes that can be divided into subparts are called composite attributes.

For example, the composite attribute address can be divided into attributes street-number, street-
name and apartment-number.

2. Single-valued and multivalued attributes

Attributes that have a single value for a particular entity are called single-valued attributes.

For example, customer-name, salary etc.

Attributes that have multiple values for a particular entity are called multivalued attributes.

For example, an employee may have multiple telephone numbers. So, the attribute telephone-no
is a multivalued attribute.

3. Derived Attributes

If the value of an attribute can be derived from the values of other related attributes or entities, then
that attribute is called a derived attribute.

The attribute from which another attribute is derived is called the base or stored attribute.

The value of a derived attribute is not stored, but is computed when required.

For example, if an entity set employee has two attributes date-of-birth and age, then the attribute
age is a derived attribute and the attribute date-of-birth is the base or stored attribute.

Relationship Sets

A relationship is an association among several entities.

For example, we can define a relationship that associates customer Hayes with loan L-15. This
relationship specifies that Hayes is a customer with loan number L-15.

A relationship set is a set of relationships of the same type.

For example, consider the two entity sets customer and loan. We define the relationship set borrower to
denote the association between customers and the bank loans that the customers have. The following figure
depicts this association:

customer

customer-street

customer-name

customer-city

customer-id

loan

amount loan-no

Figure: E-R diagram for customer and loan entity sets and the relationship set borrower.

borrower

Figure: Symbol for derived attribute in E-R diagram.

A

 A

Figure: Symbol for multivalued attribute in E-R diagram.

9

The association between entity sets is referred to as participation ; that is, the entity sets E1, E2, ..., En
participate in relationship set R.

A relationship instance in an E-R schema represents an association between the named entities in the
real-world enterprise that is being modeled.

As an illustration, the individual customer entity Hayes, who has customer identifier 677-89-9011, and
the loan entity L-15 participate in a relationship instance of borrower. This relationship instance represents
that, in the real-world enterprise, the person called Hayes who holds customer-id 677-89-9011 has taken the
loan that is numbered L-15.

A relationship may also have attributes called descriptive attributes. For example, consider the entity
sets customer and loan and the relationship set borrower. We could associate the attribute date-issued to that
relationship to specify the date when the loan was issued:

Most of the relationship sets in a database system are binary – that is, they involve two entity sets.
Occasionally, however, relationship sets involve more than two entity sets.

As an example, consider the entity sets employee, branch, and job. Examples of job entities could
include manager, teller, auditor, and so on. Job entities may have the attributes title and level. The
relationship set works-on among employee, branch, and job is an example of a ternary relationship. A
ternary relationship among Jones, Perryridge, and manager indicates that Jones acts as a manager at the
Perryridge branch. Jones could also act as auditor at the Downtown branch, which would be represented by
another relationship. Yet another relationship could be between Smith, Downtown, and teller, indicating
Smith acts as a teller at the Downtown branch.

The number of entity sets that participate in a relationship set is called the degree of the relationship set.
A binary relationship set is of degree 2; a ternary relationship set is of degree 3.

Constraints

An E-R enterprise schema may define certain constraints to which the contents of a database must
conform. Different types of constraints can be depicted in E-R model:

1. Cardinality Constraints – one-to-one, one-to-many, many-to-one, many-to-many
2. Participation Constraints – partial, total
3. Key Constraints – superkey, candidate key, primary key

employee

employee-name employee-id
job

level title

Figure: Ternary relationship.

works-on branch

branch-name

branch-city branch-street

customer

customer-street

customer-name

customer-city

customer-id

loan

amount loan-no

Figure: Descriptive attribute date-issued.

borrower

date-issued

10

Cardinality Constraints / Mapping Cardinalities / Cardinality Ratios

Cardinality constraints express the number of entities to which another entity can be associated via a
relationship set.

For a binary relationship set R between entity sets A and B, the mapping cardinality must be one of the
following:

� One to one. An entity in A is associated with at most one entity in B, and an entity in B is associated
with at most one entity in A.

� One to many. An entity in A is associated with any number (zero or more) of entities in B. An entity

in B, however, can be associated with at most one entity in A.

� Many to one. An entity in A is associated with at most one entity in B. An entity in B, however, can

be associated with any number (zero or more) of entities in A.

� Many to many. An entity in A is associated with any number (zero or more) of entities in B, and an

entity in B is associated with any number (zero or more) of entities in A.

A B R

A B
R

Figure (a): many-to-many mapping cardinality.

Figure (b): E-R diagram notation for
 many-to-many relationship

Figure (c): Alternative notation.

A B R

Figure (a): many-to-one mapping cardinality.

Figure (b): E-R diagram notation for
 many-to-one relationship

Figure (c): Alternative notation.

A B

R

A B R

A B
R

Figure (a): One-to-many mapping cardinality.

Figure (b): E-R diagram notation for
 one-to-many relationship

Figure (c): Alternative notation.

A B R

A B
R

Figure (a): One-to-one mapping cardinality.

Figure (b): E-R diagram notation for
 one-to-one relationship

Figure (c): Alternative notation.

11

Participation Constraints

The participation constraints used in E-R model are:

1. Total
2. Partial

The participation of an entity set E in a relationship set R is said to be total if every entity in E
participates in at least one relationship in R. If only some entities in E participate in relationships in R, the
participation of entity set E in relationship R is said to be partial .

For example, we expect every loan entity to be related to at least one customer through the borrower
relationship. Therefore the participation of loan in the relationship set borrower is total.

In contrast, an individual can be a bank customer whether or not she has a loan with the bank. Hence, it
is possible that only some of the customer entities are related to the loan entity set through the borrower
relationship, and the participation of customer in the borrower relationship set is therefore partial.

Cardinality Limits

E-R diagrams also provide away to indicate more complex constraints on the number of times each
entity participates in relationships in a relationship set.

An edge between an entity set and a binary relationship set can have an associated minimum and
maximum cardinality, shown in the form l..h, where l is the minimum and h the maximum cardinality.

A minimum value of 1 indicates total participation of the entity set in the relationship set.

A maximum value of 1 indicates that the entity participates in at most one relationship, while a
maximum value ∗ indicates no limit.

Note that a label 1..h on an edge is equivalent to a double line.

For example, consider the following figure. The edge between loan and borrower has a cardinality
constraint of 1..1, meaning the minimum and the maximum cardinality are both 1. That is, each loan must
have exactly one associated customer. The limit 0..∗ on the edge from customer to borrower indicates that a
customer can have zero or more loans. Thus, the relationship borrower is one to many from customer to
loan, and further the participation of loan in borrower is total.

Figure: Cardinality limits on relationship sets.

Weak Entity Sets

An entity set that do not have sufficient attributes to form a primary key is called a weak entity set.

An entity set that has a primary key is termed a strong entity set.

As an illustration, consider the entity set player, which has two attributes – name and number. Now,
name cannot be a primary key as there might be more than one player with the same name. However,
number is unique for a particular team, but different teams have the same player number. For example, there

E R

Figure: E-R notation for total participation of entity set in relationship.

12

might be player A with number 1 of team X, and player A with number 1 of team Y. So, the entity set player
cannot be complete without being somehow associated with the entity set team.

As another illustration, consider the entity set payment, which has the three attributes: payment-number,
payment-date, and payment-amount. Payment numbers are typically sequential numbers, starting from 1,
generated separately for each loan payment. Thus, although each payment entity is distinct, payments for
different loans may share the same payment number. Thus, this entity set does not have a primary key; it is a
weak entity set.

Figure: E-R diagram with a weak entity set.

� For a weak entity set to be meaningful, it must be associated with another entity set, called the
identifying or owner entity set.

� Every weak entity must be associated with an identifying entity; that is, the weak entity set is said to
be existence dependent on the identifying entity set. The identifying entity set is said to own the
weak entity set that it identifies.

� The relationship associating the weak entity set with the identifying entity set is called the
identifying relationship.

� The identifying relationship is many to one from the weak entity set to the identifying entity set, and
the participation of the weak entity set in the relationship is total.

� In our example, the identifying entity set for payment is loan, and a relationship loan-payment that
associates payment entities with their corresponding loan entities is the identifying relationship.

Discriminator / Partial Key of a Weak Entity Set

Although a weak entity set does not have a primary key, we nevertheless need a means of distinguishing
among all those entities in the weak entity set that depend on one particular strong entity. The discriminator
or partial key of a weak entity set is a set of attributes that allows this distinction to be made.

For example, the discriminator of the weak entity set payment is the attribute payment-number, since, for
each loan, a payment number uniquely identifies one single payment for that loan.

How the primary key of a weak entity set is formed

The primary key of a weak entity set is formed by the primary key of the identifying entity set, plus the
weak entity set’s discriminator.

In the case of the entity set payment, its primary key is {loan-number, payment-number}, where loan-
number is the primary key of the identifying entity set, namely loan, and payment-number distinguishes
payment entities within the same loan.

Placement of descriptive attributes in a weak entity set

The identifying relationship set should have no descriptive attributes, since any required attributes can be
associated with the weak entity set.

Participation of weak entity sets in relationships

� A weak entity set can participate in relationships other than the identifying relationship.

13

For instance, the payment entity could participate in a relationship with the account entity set,
identifying the account from which the payment was made.

� A weak entity set may participate as owner in an identifying relationship with another weak entity
set.

� It is also possible to have a weak entity set with more than one identifying entity set.

A particular weak entity would then be identified by a combination of entities, one from each
identifying entity set.

The primary key of the weak entity set would consist of the union of the primary keys of the
identifying entity sets, plus the discriminator of the weak entity set.

Weak entity sets – should they be designed as multivalued attributes?

In some cases, the database designer may choose to express a weak entity set as a multivalued composite
attribute of the owner entity set.

In our example, this alternative would require that the entity set loan have a multivalued, composite
attribute payment, consisting of payment-number, payment-date, and payment-amount.

A weak entity set may be more appropriately modeled as an attribute if it participates in only the
identifying relationship, and if it has few attributes.

Conversely, a weak-entity set representation will more aptly model a situation where the set participates
in relationships other than the identifying relationship, and where the weak entity set has several attributes.

Specialization and Generalization

Specialization

The process of designating subgroupings within an entity set is called specialization.

For example, consider an entity set person, with attributes name, street and city. A person may be further
classified as a customer or an employee. Each of these person types is described by a set of attributes that
includes all the attributes of entity set person plus possibly additional attributes. For example, customer
entities may be described further by the attribute customer-id, whereas employee entities may be described
further by the attributes employee-id and salary. The specialization of person allows us to distinguish among
persons according to whether they are employees or customers.

Generalization

There are similarities between the customer entity set and the employee entity set in the sense that they
have several attributes in common. This commonality can be expressed by generalization, which is a
containment relationship that exists between a higher-level entity set and one or more lower-level entity sets.
In our example, person is the higher-level entity set and customer and employee are lower-level entity sets.
Higher- and lower-level entity sets also may be designated by the terms superclass and subclass,
respectively. The person entity set is the superclass of the customer and employee subclasses.

Figure: Specialization and Generalization. [Note: ISA means “is a”]

14

Reduction of E-R Schemas to Tables

Strong Entity Sets

Weak Entity Sets

Relationship Sets

One-to-One Relationship

One-to-Many Relationship

Many-to-One Relationship

Just the reverse of one-to-many.

E1

A1 A2 An …

E1 (A1, A2, …, An)
E2 (B1, A1, B2, …, Bn, C1, C2, …, Cn)

E-R Schema

Relational Schema

E2

B1 B2 Bn …

R

C1 C2 Cn …

E1

A1 A2 An …

E (A1, A2, …, An, B1, B2, …, Bn)

E-R Schema Relational Schema

E2

B1 B2 Bn …

R

loan (loan-number, amount)
payment (loan-number, payment-number, payment-date, payment-amount)

E-R Schema

Relational Schema

E

A1 A2 An …

E (A1, A2, …, An)

E-R Schema Relational Schema

15

Many-to-Many Relationship

Composite Attributes

Multivalued Attributes

Generalization

E-R Schema Relational Schema

person (person-id, name, street, city)
employee (person-id, salary)
customer (person-id, credit-rating)

E

A1 A2 A3

E (A1, A2)
E_A (A3, A1)

E-R Schema Relational Schema

E

A1 A2 A3

E (A1, A2, B1, B2)

E-R Schema Relational Schema

B1

B2

E1

A1 A2 An …

E1 (A1, A2, …, An)
E2 (B1, B2, …, Bn)
R (A1, B1, C1, C2, …, Cn)

E-R Schema

Relational Schema

E2

B1 B2 Bn …

R

C1 C2 Cn …

16

E-R Diagram Symbols at a Glance

Figure: Symbols used in E-R diagram.

Figure: Alternative E-R notations.

17

Figure: Symbols used in the UML class diagram notation.

18

DML: Data-Manipulation Language

So far we’ve seen how to use table manipulation commands [sorry, we couldn’t include the commands
due to lack of time… �]. Now we’ll observe how to put data into tables, retrieve data from tables and
manipulate these data.

DML (Data-Manipulation Language): What it is

A data-manipulation language is a language that enables users to access or manipulate data as organized
by the appropriate data model.

Data-manipulation is

� The retrieval of information stored in the database
� The insertion of new information into the database
� The deletion of information from the database
� The modification of information stored in the database

Query Language

A query is a statement requesting the retrieval of information. The portion of a DML that involves
information retrieval is called a query language. Although technically incorrect, it is common practice to use
the terms query language and data-manipulation language synonymously.

The SELECT Operation / Statement

The SELECT statement is used to retrieve information from the database according to provided
conditions.

To demonstrate the use of SELECT statement, let’s assume the following two relation instances.

customer_name customer_street customer_city account_number customer_name balance
Somebody Mirpur Road Dhaka A-101 Anybody 1000
Somebody Aga Kha Road Bogra A-102 Anybody 1500
Anybody XYZ Road Khagrachhori A-103 Somebody 2000
Nobody Mirpur Road Dhaka A-104 Nobody 2500

customer account

Q1. From the customer table, find out the information of all the customers who live in Dhaka.
select * from customer where customer_city = 'Dhaka' ;

Output:

customer_name customer_street customer_city
Somebody Mirpur Road Dhaka
Nobody Mirpur Road Dhaka

Q2. From the customer table, find out the information of all the customers who live in either
Dhaka or Bogra.

select * from customer where customer_city = 'Dhaka' or customer_city = 'Bogra' ;

Output:

customer_name customer_street customer_city
Somebody Mirpur Road Dhaka
Somebody Aga Kha Road Bogra
Nobody Mirpur Road Dhaka

19

Q3. Find out the customers along with their account numbers who have account balances of at
least 2000 taka.

select customer_name, account_number from account where balance >= 2000 ;

Output:

customer_name account_number
Somebody A-103
Nobody A-104

From the above three queries, we can observe the general structure for the select statement:

SELECT attribute_1, attribute_2, ... , attribute_N
FROM table
WHERE expression

• The attributes after the SELECT phrase are those attributes which we want to display at the
output result.

If an asterisk (*) is placed after the select phrase instead of attribute names, it would mean that
we want all the attributes at the output.

• The table name after the FROM clause refers to the relation from which we want to perform the
query.

• The expressions after the WHERE clause contains the actual query. The expressions may contain
the following operators:

Comparison operators: <, <=, >, >=, =, <>

Logical connectives: AND, OR, NOT

Simplified operators: this BETWEEN some_value AND some_other_value,
 this NOT BETWEEN some_value AND some_other_value

 [These are the substitutes for:
 this <= some_value AND this >= some_other_value]

Q4. From the following table named result, find out the students (along with their marks) who
have scored more than 80 marks, and display them in the descending order of their marks.

student_name marks
A 55
B 90
C 40
D 80
E 85
F 95
G 82

select student_name, marks from result where marks > 80 order by marks desc;

Or, as the table contains only these two fields, we can write:
select * from result where marks > 80 order by marks desc;

Output:

student_name marks
F 95
B 90
E 85
G 82

20

Q5. From the above table in Q4, we want to find out the top-most 3 students (to give them prizes
for obtaining the 1st, 2nd and 3rd places). How would you find them?

select student_name from result order by marks desc limit 3;

Output:

student_name
F
B
E

Q6. From the table in Q4, we want to find out the student who stood 2nd. How would you find him?
select student_name from result order by marks desc limit 1, 1;

Output:

student_name
B

Q7. From the table in Q4, we want to find out how many students scored >= 80. How would you
find it?

select count(*) from result where marks >= 80;

Output:

count(*)
5

Q8. We want to know how the results of the students (in Q4) would look like if we were to give
away 5 marks as grace. How would you find it?

Select student_name , marks + 5 from result;

Output:

student_name marks + 5
A 60
B 95
C 45
D 85
E 90
F 100
G 87

From the queries Q4 to Q8, we can observe the general structure for the select statement:

SELECT attribute(s) and/or function(s)
FROM table
WHERE expression
ORDER BY attribute(s)
LIMIT number_of_rows / starting_row_index, number_of_rows

21

Relational Algebra

We’ve seen various query statements for retrieving information according to our needs. But did you ever
wonder how these queries are executed by the computer? Put in other words, how does the computer
interpret these queries? To get the answer, we have to go back into 1970; we need to know the history of
how the DBMS was born.

History omitted for lack of time… �

Fundamental Relational Algebra Operations

These operations are called fundamental as they are sufficient for expressing any relational algebra
query, although some common queries become lengthy to express.

1. Selection (unary)
2. Projection (unary)
3. Rename (unary)
4. Union (unary)
5. Set-difference (binary)
6. Cartesian product (binary)

The Selection Operation

Q9. From the customer table in Q1, find out the information of all the customers who live in
Dhaka.

SQL: select * from customer where customer_city = 'Dhaka' ;

RA: σ customer_city = "Dhaka" (customer)

So, the general structure for the select operation of relational algebra is:

σ expression (relation)

The Projection Operation

Q10. From the customer table in Q1, find out the names and street addresses of all the customers.

SQL: select customer_name , customer_street from customer

RA: П customer_name, customer_city (customer)

So, the general structure for the projection operation of relational algebra is:

П attributes (relation)

Composition of the Relational Operations

Q11. From the customer table in Q1, find out the names of all the customers who live in either
Dhaka or Bogra.

SQL: select customer_name
 from customer
 where customer_city = 'Dhaka' or customer_city = 'Bogra' ;

RA: П customer_name (σ customer_city = "Dhaka" ⋁⋁⋁⋁ customer_city = "Bogra" (customer))

22

The Union Operation

Q12. From the tables below, find the names of all the customers who have either an account or a
loan or both.

customer_name loan_number customer_name account_number
Somebody L-101 Anybody A-102
Somebody L-102 Somebody A-103
Anybody L-103 Nobody A-104

borrower depositor

SQL: select customer_name from borrower
 union
 select customer_name from depositor;

RA: П customer_name (borrower) ∪∪∪∪ П customer_name (depositor)

Output:

customer_name
Somebody
Anybody
Nobody

The Set-Difference Operation

Q13. From the tables in Q12, find all the customers who have accounts
but no loans.

SQL: select customer_name from depositor

 minus (or except)
 select customer_name from borrower;

RA: П customer_name (depositor) – П customer_name (borrower)

Output:

customer_name
Nobody

Notes on the union and set-difference operations:

� Unlike the SELECT clause, the UNION, MINUS and EXCEPT clauses will eliminate duplicate values.

� For a union operation r1 ∪∪∪∪ r2 or a set-difference operation r1 – r2 to be valid, two conditions must
hold:
1. The relation r1 and r2 must be of the same arity; i.e., they must have the same number of

attributes.
2. For all i, the domains of i-th attribute of r1 and the domains of i-th attribute of r2 must be the

same.

Note that r1 and r2 can be, in general, temporary relations that are the result of relational algebra
expressions.

� MySQL does not support the MINUS or EXCEPT clauses. Rather, set-difference is performed via
outer join operations. We’ll learn about outer join operation later.

borrower depositor

customers

customers

borrower depositor

23

The Cartesian-Product Operation

Q14. From the tables below, find all the customers who have a loan at Dhaka branch.

loan_number branch_name amount customer_name loan_number
L-101 Dhaka 1000 Somebody L-101
L-103 Khulna 2000 Nobody L-103

 Anybody L-103

loan borrower
The problem is, customer_name is in one table, whereas branch_name is in another table. Then how

would we perform a select operation? Well, the good news is, we have the loan_number in common. So,
we can solve the problem by the following algorithm: for each loan_number in loan table where
branch_name is Dhaka, find out the customer_name corresponding to that loan_number.

Step 1: Find the loan_numbers from loan table where branch_name is Dhaka.

SQL: select loan_number from loan where branch_name = 'Dhaka' ;

RA: П loan_number (σ branch_name = "Dhaka" (loan))

Step 2: Find the customer_names from borrower table where loan_numbers are equal to the
loan_numbers derived from step 1.

SQL: select customer_name from borrower
 where loan_number = any_loan_number_in_the_relation_found_from_step_1;

RA: П customer_name (σ loan_number = any_loan_number_in_the_relation_found_from_step_1 (borrower))

But the problem is, how can we express any_loan_number_in_the_relation_found_from_step_1?
The problem arises as that expression is a set of values, not a single value that we can compare with another
value.

The solution comes with the Cartesian-product (also known as cross-product) operation. From set
theory, we know that,

if A = {1, 2, x}

and B = {x, b}

then A × B = {(1, x), (1, b), (2, x), (2, b), (x, x), (a, b)}

If our requirement is to get the common value (in this case, x), then we can cross-product the sets and
find our required value by checking where both parts of a pair are the same (in this case, (x, x)).

Similarly, if we cross-product the above two relations, we will get the following relation:

loan_number branch_name amount customer_name loan_number
L-101 Dhaka 1000 Somebody L-101
L-101 Dhaka 1000 Nobody L-103
L-101 Dhaka 1000 Anybody L-103
L-103 Khulna 2000 Somebody L-101
L-103 Khulna 2000 Nobody L-103
L-103 Khulna 2000 Anybody L-103

The above relation can be obtained by the following query or relational algebra expression:

SQL: select * from loan , borrower;

RA: σ (loan × borrower)

Now, let’s filter-out the rows where both the loan_numbers are the same. Then we’ll get the following
relation:

loan_number branch_name amount customer_name loan_number
L-101 Dhaka 1000 Somebody L-101
L-103 Khulna 2000 Anybody L-103

24

The above filtration (along with the cross-product) can be done by the following query or RA
expression:

SQL: select * from loan , borrower where loan_number = loan_number;

RA: σ loan_number = loan_number (loan × borrower)

But the DBMS system will complain if we try to execute the above query. How is the program supposed
to know that these two loan_numbers are to be checked for equality from both the sides and not from only
the left side or only the right side?

That’s why we need to specify the attribute names along with their table names:

SQL: select * from loan , borrower
 where loan . loan_number = borrower . loan_number;

RA: σ loan.loan_number = borrower.loan_number (loan × borrower)

Fine. Now, to get our desired result, we need to filter–out the records which contain ‘Dhaka’ as the
branch_name. Then we’ll get the following relation:

loan_number branch_name amount customer_name loan_number
L-101 Dhaka 1000 Somebody L-101

The above filtration (along with the cross-product and the previous filtration) can be done by the
following query or RA expression:

SQL: select * from loan , borrower
 where loan . loan_number = borrower . loan_number and branch_name = 'Dhaka' ;

RA: σ branch_name = "Dhaka" (σ loan.loan_number = borrower.loan_number (loan × borrower))

Finally, we only need the customer_names. So, the final query for performing all these steps would be:

SQL: select customer_name from loan , borrower
 where loan . loan_number = borrower . loan_number and branch_name = 'Dhaka' ;

RA: П customer_name (σ branch_name = "Dhaka" (σ loan.loan_number = borrower.loan_number (loan × borrower)))

And the final output would be:

customer_name
Somebody

The Rename Operation

Let’s go through an example.

Q15. From the table named result below, find the highest marks.

student_name marks
A 60
B 70
C 80

SQL: select max(marks) from result;

But how would you express this in relational algebra? Solution:

Step 1: Compute the Cartesian-product relation:

student_name marks student_name marks
A 60 A 60
A 60 B 70
A 60 C 80
B 70 A 60

25

B 70 B 70
B 70 C 80
C 80 A 60
C 80 B 70
C 80 C 80

RA: σ (result × result)

Step 2: Filter out the tuples in which the marks on the left side are lesser than the marks on the right side
(or vice-versa):

student_name marks student_name marks
A 60 B 70
A 60 C 80
B 70 C 80

RA: σ marks < marks (result × result)

Now the problem is obvious. How can we distinguish the two marks? Using the relation name
(i.e., result.marks = result.marks) can’t remove the ambiguity. In this case, we have to rename one or both
the relations. It can be done as below (renaming only one of the relations into res):

RA: σ result.marks < res.marks (result × ρ res (result))

SQL: select * from result , result as res where result . marks < res . marks;

The general structure of the rename operation is as follows:

ρnew-name (old-name)

Step 3: Take only the marks field:

marks
60
70

RA: П result.marks (σ result.marks < res.marks (result × ρ res (result)))

SQL: select distinct result.marks from result , result as res
 where result . marks < res . marks;

Note that we’re using the keyword DISTINCT to get unique values. RA automatically provides distinct
values, whereas SQL select query doesn’t.

Step 4: Take the set-difference between the marks attribute in result relation and this temporary relation:

RA: П marks (result) – П marks (σ result.marks < res.marks (result × ρ res (result)))

SQL: select marks from result
 minus
 (select distinct result.marks from result , result as res
 where result . marks < res . marks) ;

Additional Relational Algebra Operations

These operations do not add any power to the algebra, but they simplify common queries.

1. Set-intersection (binary)
2. Natural join (binary)
3. Division (binary)
4. Assignment (unary)

26

The Set-intersection Operation

Note: r1 ∩ r2 = r1 – (r1 – r2) = r2 – (r2 – r1)

Q16. From the table in Q12, find all the customers who have both an account and
a loan.

RA: П customer_name (borrower) ∩ customer_name (depositor)

SQL: select customer_name from borrower
 intersect
 select customer_name from depositor;

Note that MySQL doesn’t support the INTERSECT operation. So, the following query is used instead:

SQL: select distinct borrower . customer_name from borrower , depositor
 where borrower . customer_name = depositor . customer_name;

OR, select distinct customer_name from borrower
 where customer_name in (select customer_name from depositor) ;

OR, select distinct borrower . customer_name from borrower
 where exists
 (select * from depositor

 where borrower . customer_name = depositor . customer_name) ;

RA: П borrower.customer_name (σ borrower.customer_name = depositor.customer_name (borrower × depositor))

 Output:

customer_name
Somebody
Anybody

The Natural Join Operation

This operation simplifies the Cartesian-product operation in that it automatically applies the conditions
that common fields are to be matched. Also, the common fields are displayed as a single field at output.

Thus, the operation

П borrower.customer_name (σ borrower.customer_name = depositor.customer_name (borrower × depositor))

becomes

П borrower.customer_name (borrower ⋈⋈⋈⋈ depositor)

Q17. From the table in Q12, find the customers (along with all their information) who have both
an account and a loan.

SQL: select * from borrower natural join depositor ;

RA: σ (borrower ⋈⋈⋈⋈ depositor)

 Output:

customer_name loan_number account_number
Somebody L-101 A-103
Somebody L-102 A-103
Anybody L-103 A-102

r1 r2

27

Extended Relational Algebra Operations

These operations simply extend the basic operations in several ways.

1. Outer join – allows relational algebra expressions to deal with null values by extending join
operation

2. Generalized Projection – allows arithmetic operations as part of projection
3. Aggregate Functions – sum, avg, count, min, max

The Outer Join Operation

Consider the following two tables:

id name id name
1 A 1 A
2 B 2 C

x y
Both the tables have a common name – A. However, table x has a name (B) which table y doesn’t have.

On the other hand, table y has a name (C) that table x doesn’t have.

If we cross-join the tables, we’ll get:

id name id name
1 A 1 A
1 A 2 C
2 B 1 A
2 B 2 C

Now, if we use natural join, we’ll come up with only the first row. But what if we want to keep all the
records from the left table or right table or both anyway? For example, we want to know which records in
table x doesn’t match with records in table y?

Outer join answers to this query. There are three types of outer joins:

Left Outer Join

Keeps all the records from the left table and assigns null values to those records which do not match on
the right table.

id name id name
1 A 1 A
2 B null null

Right Outer Join

Keeps all the records from the right table and assigns null values to those records which do not match on
the left table.

id name id name
1 A 1 A

null null 2 C

Full Outer Join

Keeps all the records from the both the tables and assigns null values to those records which do not
match.

id name id name
1 A 1 A
2 B null null

null null 2 C

28

Q18. From the tables in Q12, find all the customers who have accounts
but no loans.

SQL: select customer_name
 from depositor left outer join borrower
 on depositor . customer_name = borrower . customer_name
 where loan_number is null

OR, select customer_name
 from depositor left outer join borrower
 using (customer_name)
 where loan_number is null

RA: П customer_name (σ loan_number = null (depositor ̲̲̲̲̅̅̅̅⋈⋈⋈⋈ borrower))

Output:

customer_name
Nobody

Q19. From the table in Q12, find the names of all the customers who have either an account or a
loan but not both.

SQL: select customer_name
 from depositor full outer join borrower
 on depositor . customer_name = borrower . customer_name
 where loan_number is null or account_number is null

OR, select customer_name
 from depositor full outer join borrower
 using (customer_name)
 where loan_number is null or account_number is null

OR, select customer_name
 from depositor natural full outer join borrower
 where loan_number is null or account_number is null

RA: П customer_name (σ loan_number = null ⋁⋁⋁⋁ account_number = null (depositor ̲̲̲̲̅̅̅̅⋈⋈⋈⋈ ̲̲̲̲̅̅̅̅ borrower))

Output:

customer_name
Somebody
Anybody
Nobody

Generalized Projection

This operation extends the projection operation by allowing arithmetic functions to be used in the
projection list.

As an example, let’s revisit query Q8: we want to know how the results of the students (in Q4) would
look like if we were to give away 5 marks as grace. How would we find it?

SQL: select student_name , marks + 5 from result;

RA: П student_name, marks + 5 (result)

Aggregate Functions

Aggregate functions take a collection of values and return a single value as a result.

For example, consider the following employee table:

customers

borrower depositor

customers

borrower depositor

29

employee_name branch_name branch_city salary
A DU Dhaka 1000
B DU Dhaka 2000
C BUET Dhaka 3000
D KUET Khulna 4000
E KU Khulna 5000
F RU Rajshahi 6000

Q20. Find the number of branches appearing in the employee relation.

SQL: select count(distinct branch_name) from employee;

RA: GGGG count-distinct(branch_name) (employee)

Output:

count(distinct branch_name)
5

Q21. Find the total salary of all employees at each branch of the bank.

SQL: select branch_name , sum(salary) from employee group by branch_name;

RA: branch_nameGGGG sum(salary) (employee)

Output:

branch_name sum(salary)
BUET 3000
DU 3000
KU 5000
KUET 4000
RU 6000

Note that the column header for the second column is not very meaningful. To give it a meaningful
name, e.g., total_salary, we can rewrite the above query as below:

SQL: select branch_name , sum(salary) as total_salary from employee group by branch_name;

RA: branch_nameGGGG sum(salary) as total_salary (employee)

Output:

branch_name total_salary
BUET 3000
DU 3000
KU 5000
KUET 4000
RU 6000

Q22. Find branch city, branch name wise total salary, average salary and also number of
employees.

SQL: select branch_city, branch_name , sum(salary), avg(salary), count(employee_name)
 from employee group by branch_city, branch_name;

RA: branch_city, branch_nameGGGG sum(salary), avg(salary), count(salary) (employee)

Output:

branch_city branch_name sum(salary) avg(salary) count(employee_name)
Dhaka BUET 3000 3000.0000 1
Dhaka DU 3000 1500.0000 2
Khulna KU 5000 5000.0000 1

30

Khulna KUET 4000 4000.0000 1
Rajshahi RU 6000 6000.0000 1

Q23. From the following table, find the average balance for each customer who lives in Dhaka and
has at least two accounts.

customer_name customer_city customer_name account_no balance
A Dhaka A A-101 1000
B Dhaka A A-102 2000
C Khulna B A-103 3000
D Dhaka C A-104 4000
 D A-105 5000
 D A-106 6000

customer account

Here, we cannot insert both the conditions into the where clause, because counting how many accounts a
customer has can only be done using an aggregate function (count). As aggregate functions operate on
groups whereas the where clause operates on tuples, these two conditions cannot be put together. For
solving this problem, SQL introduces another clause having where the conditions to be operated on groups
are to be placed.

So how would we write this query?

Step 1: Find the customers (with all the other information) who live in Dhaka.

SQL: select * from customer natural join account where customer_city = 'Dhaka' ;

 This would yield the following relation:

customer_name customer_city account_no balance
A Dhaka A-101 1000
A Dhaka A-102 2000
B Dhaka A-103 3000
D Dhaka A-105 5000
D Dhaka A-106 6000

Step 2: Because we need to find average balance for each customer, we need to group the records by
customer_name; but remember that we have to take only those customers who have at least two accounts.

SQL: select * from customer natural join account
 where customer_city = 'Dhaka'
 group by customer_name
 having count(distinct account_no) >= 2 ;

This would yield the following relation:

customer_name customer_city account_no balance
A Dhaka A-101 1000
D Dhaka A-105 5000

Step 3: However, we need to find the average balance for each customer.

SQL: select customer_name , avg(balance)
 from customer natural join account
 where customer_city = 'Dhaka'
 group by customer_name
 having count(distinct account_no) >= 2 ;

Thus, the final output will be:

customer_name avg(balance)
A 1500.0000
D 5500.0000

31

Modification of Database

It addresses how to add, remove or change information in the database. Database modification is
expressed by assignment operation, ←.

Insertion

Inserting records in a database is quite easy. We either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. Consider the following two tables:

customer loan_no branch amount customer account_no branch balance
A 101 Dhaka 1000
B 102 Rajshahi 2000
C 103 Dhaka 3000

 loan account

Now, let’s insert a record in the loan table:

SQL: insert into loan values ('D' , 104 , 'Bogra' , 4000);

RA: loan ← loan ∪∪∪∪ {("D", 104, "Bogra", 4000)}

Easy, isn’t it? Let’s try another example (a bit complex, however). We want to provide a new savings
account of Tk. 200 for all the loan holders of Dhaka branch. The query would be as follows:

SQL: insert into account
 select customer , loan_no , branch , 200 from loan where branch = ' Dhaka' ;

RA: account ← account ∪∪∪∪ (П customer, loan_no, branch, 200 (σ branch = "Dhaka" (loan)))

Note that we’re directly projecting 200 to forcefully set the value of balance as 200.

Therefore, we’ve seen that to insert data to a relation, we either specify a tuple to be inserted or write a
query whose result is a set of tuples to be inserted. However, two conditions must be met:

1. The attribute values for inserted tuples must be members of the attribute’s domain.
2. Tuples inserted must be of the same arity.

Deletion

Deletion removes the selected tuple/tuples from the database. Only the whole tuples can be deleted, not
values of particular attributes.

The SQL syntax for deletion is fairly simple:

delete from table where expression

So how does the delete operation work? Let’s discover through an example. Consider the following table
named employee:

employee_name branch_name branch_city salary
A DU Dhaka 1000
B RU Rajshahi 2000
C BUET Dhaka 3000

Suppose we want to delete the employee named B. What the delete statement does is, it first selects the
rows which we want to delete:

σ employee_name = "B" (employee)

So, the second row from the table would be selected.

Now, we’ll try to get a relation where this selected row doesn’t exist. How? Very simple. Just use set
difference:

employee – σ employee_name = "B" (employee)

32

The above set-difference operation will produce the following relation:

employee_name branch_name branch_city salary
A DU Dhaka 1000
C BUET Dhaka 3000

Now, we can just replace the original employee table with this new table using the assignment operation:

employee ← employee – σ employee_name = "B" (employee)

Voilá, it’s done!

Update

Update is used to change or modify values of one or more attributes of a tuple/tuples. The SQL syntax
for updating is:

update table
set attribute_1 = value_1, ..., attribute_n = value_n
where expression

So how does the update operation work? Consider the above table again. Suppose we want to change
employe B’s city from Rajshahi to Comilla. To do this, we’ll first use projection to project the attributes of
that row. But instead of projecting branch_city, we’ll directly project “Comilla”. This will forcibly place
“Comilla” as the attribute’s value. The projection is as follows:

П employee_name, branch_name, "Comilla" , salary (employee)

We’ll get a relation containing the following tuple:

employee_name branch_name branch_city salary
B RU Comilla 2000

Now, we’ll delete the row to be updated (i.e., the row containing employee_name B) from the original
table:

employee ← employee – σ employee_name = "B" (employee)

The original table should look like the following:

employee_name branch_name branch_city salary
A DU Dhaka 1000
C BUET Dhaka 3000

Now, let’s add our previously projected record to this new table using union operation:

employee ← employee ∪∪∪∪ (П employee_name, branch_name, "Comilla", salary (employee))

Thus, in the final employee table, the attribute will be updated. Therefore, the steps for updating the
above attribute can be expressed as follows:

t ← П employee_name, branch_name, "Comilla", salary (employee)
employee ← employee – σ employee_name = "B" (employee)

employee ← employee ∪∪∪∪ (t)

33

Indexing and Hashing

The Problem

Many queries reference only a small fraction of records in a file. For example, “find all accounts at
Mirpur branch” only returns records from account file where branch_name = “Mirpur”. It is inefficient for
the system to read every record and to check the branch_name field for the name “Mirpur”.

We should be able to locate these records directly. To allow these forms of access, we design additional
structures associated with files. These additional structures are called indices.

Basic Concepts

An index for a file in a database system works in much the same way as the index in this textbook. If we
want to learn about a particular topic (specified by a word or a phrase) in this textbook, we can search for the
topic in the index at the back of the book, find the pages where it occurs, and then read the pages to find the
information we are looking for. The words in the index are in sorted order, making it easy to find the word
we are looking for.

Card catalogs in libraries works in a similar manner. To find a book by a particular author, we would
search in the author catalog, and a card in the catalog tells us where to find the book. To assist us in
searching the catalog, the library would keep the cards in alphabetic order by authors, with one card for each
author of each book.

Database system indices play the same role as book indices or card catalogs in libraries. For example, to
retrieve an account record given the account number, the database system would look up an index to find on
which disk block the corresponding record resides, and then fetch the disk block, to get the account record.

Keeping a sorted list of account numbers would not work well on very large databases with millions of
accounts, since the index would itself be very big. So, more sophisticated indexing techniques may be used.

Types of Indices

There are two basic kinds of indices.

1. Ordered indices: indices are based on a sorted ordering of the values.

2. Hash indices: indices are based on the values being distributed uniformly across a range of buckets.
The bucket to which a value is assigned is determined by a function, called a hash function.

Index Technique Choosing Factors

There are several techniques for both ordered indexing and hashing. No one technique is the best. Each
technique is best suited to particular database applications. Each technique must be evaluated on the basis of
these factors:

1. Access types – Finding records with a specified value or a range of values.
2. Access time – Time to find a particular data item or a set of items.
3. Insertion time – Time to find the correct place to insert the item + time to update the index.
4. Deletion time – Time to find the item to be deleted + time to update the index.
5. Space overhead – The additional space occupied by an index structure.

� We may have more than one index or hash function for a file. (The library may have card catalogues
by author, subject or title)

� An attribute or set of attributes used to look up records in a file is called the search key (This
definition of key differs from that used in super key, candidate key or primary key).

34

Ordered Indices

An ordered index stores the values of the search keys in sorted order and associates with each search key
the records that contain it.

Primary / Clustering Index

If the file containing the records is sequentially ordered, a primary index is an index whose search key
also defines the sequential order of the file.

The search key of a primary index is usually the primary key, but it is not necessarily so.

Secondary / Non-Clustering Index

Indices whose search key specifies an order different from the sequential order of the file are called
secondary indices.

Index-Sequential Files

Files that are ordered sequentially on some search key and have a primary index on that search key are
called index-sequential files.

Contents of an index record / entry

An index record or index entry consists of a search-key value and pointers to one or more records with
that value as their search key value. The pointer to a record consists of the identifier of a disk block and an
offset within the disk block to identify the record within the block.

Types of ordered indices

There are two types of ordered indices:

Account_no Pointer

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10

Index file

Account_no Branch_name Balance

A-9 Adabor 300
A-1 Adabor 500
A-5 C. O. Bazar 560
A-8 Dhanmodi 590
A-3 Dhanmodi 420
A-2 Mirpur 600
A-4 Mirpur 520
A-10 Mirpur 120
A-6 Motijheel 600
A-7 Motijheel 200

Account file

Figure: A secondary index. The Account file is ordered according to Branch_name. But the
 index file is ordered according to Account_no.

Branch_name Pointer

Adabor
C.O.
Dhanmondi
Mirpur
Motijheel

Index file

Account_no Branch_name Balance

A-9 Adabor 300
A-1 Adabor 500
A-5 C. O. Bazar 560
A-8 Dhanmodi 590
A-3 Dhanmodi 420
A-2 Mirpur 600
A-4 Mirpur 520
A-10 Mirpur 120
A-6 Motijheel 600
A-7 Motijheel 200

Account file

Figure: A primary index. The Account file is ordered according to Branch_name (which is not a
 primary key). The index file is also ordered according to Branch_name.

35

1. Dense Index
2. Sparse Index

Dense Index

Dense index is the index where an index record appears for every search-key value in the file.

Dense index for primary indices

In a dense primary index, the index record contains the search-key value and a pointer to the first data
record with that search-key value. The rest of the records with the same search key-value would be stored
sequentially after the first record, since, because the index is a primary one, records are sorted on the same
search key.

Another implementation of dense indices

A dense index can also be implemented by storing a list of pointers to all records with the same search-
key value. Doing so is not essential for primary indices.

Sparse Index

Sparce index is the index where an
index record appears for only some of the
search-key values in the file.

As is true in dense indices, each index
record contains a search-key value and a
pointer to the first data record with that
search-key value.

To locate a record, we find the index
entry with the largest search-key value that is less than or equal to the search-key value for which we are
looking. We start at the record pointed to by that index entry, and follow the pointers in the file until we find
the desired record.

Figure: Another implementation of dense index.

Branch_name Pointer

Adabor
C.O.
Dhanmondi
Mirpur
Motijheel

Index file

Account_no Branch_name Balance

A-9 Adabor 300
A-1 Adabor 500
A-5 C. O. Bazar 560
A-8 Dhanmodi 590
A-3 Dhanmodi 420
A-2 Mirpur 600
A-4 Mirpur 520
A-10 Mirpur 120
A-6 Motijheel 600
A-7 Motijheel 200

Account file
Figure: Dense index for a primary index.

Figure: Sparse index.

36

Comparative Analysis of Dense and Sparse Index

It is generally faster to locate a record if we have a dense index rather than a sparse index. However,
sparse indices have advantages over dense indices in that they require less space and they impose less
maintenance overhead for insertions and deletions.

A good trade-off

There is a trade-off that the system designer must make between access time and space overhead.
Although the decision regarding this trade-off depends on the specific application, a good compromise is to
have a sparse index with one index entry per block.

Why this trade-off is good

The dominant cost in processing a database request is the time that it takes to bring a block from disk
into main memory. Once we have brought in the block, the time to scan the entire block is negligible.

Using this sparse index, we locate the block containing the record that we are seeking. Thus, unless the
record is on an overflow block, we minimize block accesses while keeping the size of the index (and thus,
our space overhead) as small as possible.

Multi-Level Indices

The problem with single-level indices

Even if we use a sparse index, the index itself may become too large for efficient processing. It is not
unreasonable, in practice, to have a file with 100,000 records, with 10 records stored in each block. If we
have one index record per block, the index has 10,000 records. Index records are smaller than data records,
so let us assume that 100 index records fit on a block. Thus, our index occupies 100 blocks. So, how can we
minimize disk access?

� If there are no overflow blocks in the index, we can use binary search. If there are B blocks, this will
read as many as log 2 (B) blocks (as many as 7 for our 100 blocks).

� If index has overflow blocks, then sequential search is typically used, reading all B index blocks.

Thus, the process of searching a large index may be costly.

Solution to this problem

We treat the index just as we would treat any
other sequential file, and construct a sparse index on
the primary index, as in the figure beside.

To locate a record, we first use binary search on
the outer index to find the record for the largest
search-key value less than or equal to the one that we
desire. The pointer points to a block of the inner
index. We scan this block until we find the record
that has the largest search-key value less than or
equal to the one that we desire. The pointer in this
record points to the block of the file that contains the
record for which we are looking.

Using two levels of indexing, it is required to
read only one block rather than seven with binary
search, if we assume that the outer index is already in
main memory.

For very large files, additional levels of indexing
may be required.

Indices must be updated at all levels when
insertions or deletion operations are performed.

Figure: Two level sparse index.

37

Secondary Indices

A secondary index on a candidate key look just like a dense primary index, except that the records
pointed to by successive values in the index are not sorted sequentially.

If the search key of a secondary index is not a candidate key, it is not enough to point to just the first
record with each search-key value because the remaining records with the same search-key value could be
anywhere in the file. Therefore, a secondary index must contain pointers to all the records.

We can use an extra-level of indirection to implement secondary indices on search keys that are not
candidate keys. A pointer does not point directly to the file but to a bucket that contains pointers to the file.

Secondary indices must be dense, with an index entry for every search-key value, and a pointer to every
record in the file.

Secondary indices improve the performance of queries on that use keys other than the search key of the
primary index. However, they impose a significant overhead on database modification.

The designer of the database decides which secondary indices are desirable on the basis of an estimate of
the relative frequency of queries and modifications.

B
+
 Tree Index

The Problem with Indexed-Sequential File Organization

The main disadvantage of the index-sequential file organization is that performance degrades as the file
grows, both for index lookups and for sequential scans through the data. Although this degradation can be
remedied by reorganization of the file, frequent reorganizations are undesirable.

How B
+
 Tree Index Solves the Problem

B+ tree index structure maintains its efficiency despite frequent insertions and deletions. It automatically
reorganizes itself with small local changes, in the face of insertions and deletions. It imposes performance
overhead on insertion and deletion. Again, since nodes may be as much as half empty (if they have the
minimum number of children), it adds space overhead. These overheads are acceptable even for frequently
modified files, since the cost of reorganization is avoided.

Structure of a B
+
 Tree

A B+ tree index is a multilevel index but is structured differently from that of multi-level indexed-
sequential files. It is a balanced tree in which every path from the root to a leaf is of the same length.

A typical node contains up to n – 1 search key values K1, K2, …, Kn - 1, and n pointers P1, P2, …, Pn.
Search key values in a node are kept in sorted order, thus, if i < j, then Ki < Kj, i.e., K1 < K2 < … < Kn – 1.

A Pointer

A-1
A-2
A-3
A-4
A-5

Index file on A

A B C

A-4 a 100

A-1 b 200

A-5 a 300

A-2 d 400

A-3 c 500

Relation file

B Pointer

a
b
c
d

Index file on B

Figure: Secondary indices on candidate key A and non-candidate key B.

38

Leaf nodes

� All the pointers Pi (i = 1 to n – 1) in the leaf node points to either a file record with search key value
Ki, or a bucket of pointers, each of which points to a file record with that search key value.

Bucket structure is used only if search key is not a primary key, and file is not sorted in search key
order.

� Pointer Pn (n
th pointer in the leaf node) is used to chain leaf nodes together in linear order (search key

order). This allows efficient sequential processing of the file.

� Each leaf has between (n – 1) / 2 and n – 1 values. The ranges of values in each leaf do not overlap.

� If the B+-tree index is to be a dense index, every search key value must appear in some leaf node.

Non-leaf nodes

� Non-leaf nodes form a multilevel sparse index on leaf nodes. The structure of the non-leaf nodes is
same as that of leaf nodes, except that all pointers are pointing to tree nodes.

� Each non-leaf node in the tree has between n / 2 and n pointers, where n is fixed for a particular
tree. The number of pointers in a node is called the fan-out of the node.

Root node

Unlike other nonleaf nodes, the root node can hold fewer than n / 2 pointers; however, it must hold at
least two pointers, unless the tree consists of only one node.

Operations on a B
+
 Tree

The figure beside shows a B+ tree. As the
example illustrates, this tree does not have a full
index page (we have room for one more key and
pointer in the root page). In addition, one of the
data pages contains empty slots.

The key-value determines a record’s placement in a B+ tree. The leaf pages are maintained in sequential
order and a linked list (not shown) connects each leaf page with its sibling page(s). This linked list speeds
data movement as the pages grow and contract.

Adding Records to a B
+
 Tree

We must consider three scenarios when we add a record to a B+ tree. Each scenario causes a different
action in the insert algorithm. The scenarios are:

Figure: B+ tree structure with n = 3. Note that no bucket structure is used as the
 search-key is a primary key and the file is sorted in the search-key order.

Pn - 1 Kn - 1 Pn P1 K1 P2 …

Figure: Typical node of a B+ tree.

39

Leaf Page Full Index Page Full Action

NO YES / NO Place the record in sorted position in the appropriate leaf page.

YES NO 1. Split the leaf page.
2. Place Middle Key in the index page in sorted order.
3. Left leaf page contains records with keys below the middle key.
4. Right leaf page contains records with keys equal to or greater than

the middle key.

YES YES 1. Split the leaf page.
2. Records with keys < middle key go to the left leaf page.
3. Records with keys >= middle key go to the right leaf page.

4. Split the index page.
5. Keys < middle key go to the left index page.
6. Keys > middle key go to the right index page.
7. The middle key goes to the next (higher level) index.

If the next level index page is full, continue splitting the index pages.

Illustrations of the insert algorithm

Adding a record when the leaf page is not full

We’re going to insert a record with a key value of 28 into the B+ tree. The following figure shows the
result of this addition.

Adding a record when the leaf page is full but the index page is not

Now, we’re going to insert another record with a key value of 70 into our B+ tree. This record should go
in the leaf page containing 50, 55, 60, and 65. Unfortunately, this page is full. This means that we must split
the page as follows:

Left Leaf Page Right Leaf Page
50 55 60 65 70

The middle key of 60 is placed in the index page between 50 and 75.

The following table shows the B+ tree after the addition of 70.

Adding a record when both the leaf page and the index page are full

As our last example, we’re going to add another record containing a key value of 95 to our B+ tree. This
record belongs in the page containing 75, 80, 85, and 90. Since this page is full we split it into two pages:

Left Leaf Page Right Leaf Page
75 80 85 90 95

The middle key, 85, rises to the index page. Unfortunately, the index page is also full, so we split the
index page:

Left Index Page Right Index Page New Index Page
25 50 75 85 60

40

The following figure illustrates the addition of the record containing 95 to the B+ tree.

Deleting records from a B
+
 Tree

We must consider three scenarios when we delete a record from a B+ tree. Each scenario causes a
different action in the delete algorithm. The scenarios are:

Leaf Page Below
Fill Factor

Index Page Below
Fill Factor Action

NO NO Delete the record from the leaf page. Arrange keys in ascending
order to fill void. If the key of the deleted record appears in the
index page, use the next key to replace it.

YES NO Combine the leaf page and its sibling. Change the index page to
reflect the change.

YES YES 1. Combine the leaf page and its sibling.
2. Adjust the index page to reflect the change.
3. Combine the index page with its sibling.

Continue combining index pages until you reach a page with the
correct fill factor or you reach the root page.

Illustrations of the delete algorithm

Deleting a record that leaves the leaf page below fill factor, but not the index page

We begin by deleting the record with key 70 from the B+ tree. This record is in a leaf page containing 60,
65 and 70. This page will contain 2 records after the deletion. Since our fill factor3 is 50% or (2 records) we
simply delete 70 from the leaf node. The following figure shows the B+ tree after the deletion:

3 Fill factor: The minimum number of keys that can exist in a node / page. Its value is n / 2.

41

Deleting a record that leaves none of the pages below fill factor

Next, we delete the record containing 25 from the B+ tree. This record is found in the leaf node
containing 25, 28, and 30. The fill factor will be 50% after the deletion; however, 25 appears in the index
page. Thus, when we delete 25 we must replace it with 28 in the index page.

The following figure shows the B+ tree after this deletion:

Deleting a record that leaves both of the pages below fill factor

As our last example, we’re going to delete 60 from the B+ tree. This deletion is interesting for several
reasons:

1. The leaf page containing 60 (60 65) will be below the fill factor after the deletion. Thus, we must
combine leaf pages.

2. With recombined pages, the index page will be reduced by one key. Hence, it will also fall below the
fill factor. Thus, we must combine index pages.

3. 60 appears as the only key in the root index page. Obviously, it will be removed with the deletion.

The following figure shows the B+ tree after the deletion of 60. Notice that the tree contains a single
index page.

B
+
 Tree File Organization

The performance of index-sequential file organization degrades as the file grows. With growth, an
increasing percentage of index records and actual records become out of order and are stored in overflow
blocks. We solve the degradation of index lookup by using B+ tree indices on the file. We solve the
degradation problem of storing the actual records by using the leaf level of B+ tree to organize the blocks
containing the actual records.

� In a B+ tree file organization, the
leaf nodes of the tree store
records instead of storing
pointers to records.

� Since records are usually larger
than pointers, the maximum
number of records that can be
stored in a leaf node is less than
the maximum number of Figure: B+ tree file organization.

42

pointers in a non-leaf node.

� However, the leaf nodes are still required to be at least half full.

� Insertion and deletion from a B+ tree file organization are handled in the same way as that in a B+
tree index.

� When a B+ tree is used for file organization, space utilization is particularly important. We can
improve the space utilization by involving more sibling nodes in redistribution during splits and
merges. This technique is called rotation.

As an example, consider the B+ tree before the addition of the record containing a key of 70. As
previously stated, this record belongs in the leaf node containing 50 55 60 65. Notice that this node is
full, but its left sibling is not:

Using rotation we shift the record with the lowest key to its sibling. Since this key appeared in
the index page we also modify the index page. The new B+ tree appears in the following figure:

B-Tree Index

� B-tree indices are almost similar to B+ tree indices, but B-tree eliminates the redundant storage of
search key values. In B+ tree, some search key values appear twice. A corresponding B-tree allows
search key values to appear only once. Thus we can store the index in less space.

� Search keys in non-leaf nodes appear nowhere else in the B-tree; an additional pointer field for each
search key in a non-leaf node must be included.

� For non-leaf node, pointers Bi are the bucket or file record pointers.

Figure: B+ tree (above) and the corresponding B-tree (below).

43

Advantages of B-Tree

1. May use less tree nodes than a corresponding B+ tree.
2. Sometimes it is possible to find the desired value before reaching a leaf node.

Disdvantages of B-Tree

1. Only a small fraction of desired values are found before reaching a leaf node.
2. Fewer search-keys appear in non-leaf nodes; hence, fan-out is reduced. Thus, B-trees typically have

greater depth than a corresponding B+ tree.
3. Insertion and deletion are more complicated than in B+ trees.
4. Implementation is harder than B+ trees, since leaf and non-leaf nodes are of different sizes.

Typically, advantages of B-trees do not outweigh its disadvantages.

Hashing

The Problem with Sequential File Organization and How Hashing Solves It

One disadvantage of sequential file organization is that we must access an index structure to locate data,
or must use binary search, and that results in more I/O operations. File organizations based on the technique
of hashing allow us to avoid accessing an index structure. Hashing also provides a way of constructing
indices.

Hash File Organization

In a hash file organization, we obtain the address of the disk
block containing a desired record directly by computing a hash
function on the search-key value of the record.

A hash function h is a function from the set of all search-key
values K to the set of all bucket addresses B: Bi = h(Ki).

The term bucket is used to denote a unit of storage that can store
one or more records. A bucket is typically a disk block but may be
smaller or larger than a disk block.

Manipulation of Records in Hash Files

1. Insertion: To insert a record with search key Ki, compute h(Ki), which gives the address of the
bucket of the record – assuming there is space for the record – and the record is inserted.

2. Lookup: To perform a lookup on a search key value Ki, we compute h(Ki), and search the bucket
with that address. If two search keys i and j map to the same address, because h(Ki) = h(Kj), then the
bucket at the address obtained will contain records with both search key values. In this case we will
have to check the search key value of every record in the bucket to get the ones we want.

3. Deletion: If the search key value of the record to be deleted is Ki, compute h(Ki), then search the
corresponding bucket for the record and delete the record form the bucket.

Hash Functions

� The worst possible hash function maps all search-key values to the same bucket. This is undesirable.
A lookup has to examine every such record to find the desired one.

� An ideal hash function distributes the stored keys uniformly across all the buckets so that every
bucket has the same number of records.

Figure: A typical phone book as a hash table.

44

Distribution Qualities for Choosing a Hash Function

Since it cannot be known at design time precisely which search-key values will be stored in the file, such
hash function should be chosen that assigns search-key values to buckets in such a way that the distribution
has these qualities:

1. Uniform: The distribution is uniform. The hash function assigns each bucket the same number of
search-key values from the set of all possible search-key values.

2. Random: The distribution is random. In the average case, each bucket will have nearly the same
number of values assigned to it regardless of the actual distribution of the search-key values. More precisely,
the hash value will not be correlated to any externally visible ordering on the search-key values, such as
alphabetic ordering or ordering by the length of the search keys; the hash function will appear to be random.

Some Examples Illustrating These Qualities

Example 1:

Suppose we have 26 buckets, and map branch-names of account file beginning with i th letter of the
alphabet to the i th bucket.

Problem:

This does not give uniform distribution. Many more names will be mapped to “B” and “R" than to “Q”
and “X”.

Example 2:

Suppose we have 10 buckets, and a hash function to map search-key balance of account file. Supposing
min and max values to be 1 and 100,000, we can use a hash function that divides the values into 10 ranges:
1 – 10,000, 10,001 – 20,000, …, 90,001 – 100,000.

Problem:

The distribution is not random. It’s also not uniform as balances between 1 and 10,000 are far more
common than are records with balances between 90,001 and 100,000.

How Hash Functions Should be Designed

Hash functions require careful design. A bad
hash function may result in lookup taking time
proportional to the number of search keys in the
file. A well-designed function gives an average-
case lookup time that is a small constant
independent of the number of search-keys in the
file.

Typical hash functions perform some
operation on the internal binary machine
representations of characters in the search-key.
For example, for a string search-key, the binary
representations of all the characters in the string
could be added and the sum modulo number of
buckets could be returned. The figure beside
shows the application of such a scheme, with 10
buckets, to the account file, under the assumption
that the i th letter in the alphabet is represented by
the integer i.

Handling of Bucket Overflows

So far, we have assumed that, when a record is inserted, the bucket to which it is mapped has space to
store the record. If the bucket does not have enough space, a bucket overflow is said to occur.

Figure: Typical application of a hash function scheme.

45

Causes of bucket overflows

1. Insufficient buckets. Our estimate of the number of records that the relation will have was too low,
and hence the number of buckets allotted was not sufficient.

2. Skew. Some buckets are assigned more records than are others, so a bucket may overflow even when
other buckets still have space. This situation is called bucket skew.

Causes of Skew

1. Multiple records may have the same search key.
2. The chosen hash function may result in non-uniform distribution of search keys.

Reducing bucket overflows

To reduce the occurrence of overflows, we can:

1. Choose the hash function more carefully, and make better estimates of the relation size.

2. If the estimated size of the relation is nr and number of records per block is fr, allocate
(nr / fr) × (1 + d) buckets instead of (nr / fr) buckets. Here d is a fudge factor4, typically around 0.2.
Some space is wasted: about 20% of the space in the buckets will be empty. But the benefit is that
some of the skew is handled and the probability of overflow is reduced.

Handling bucket overflows

Bucket overflows can be handled using two techniques:

1. Closed Hashing. If records must be inserted into a bucket and the bucket is already full, they are
inserted into overflow buckets which are chained together in a linked list. Overflow handling using
such a linked list is called overflow chaining. The form of hash structure that we have just described
is sometimes referred to as closed hashing.

2. Open Hashing. In this technique, the set of buckets is fixed, and there are no overflow chains.

Instead, if a bucket is full, the system inserts records in some other bucket in the initial set of
buckets. When a new entry has to be inserted, the buckets are examined, starting with the hashed-to
slot and proceeding in some probe sequence, until an unoccupied slot is found. The probe sequence
can be any of the following:

a. Liner probing. The interval between probes is fixed (usually 1).

b. Quadratic probing. The interval between probes increases by some constant (usually 1)
after each probe.

c. Double hashing. The interval between probes is computed by another hash function.

4 Fudge factor: A quantity that is added or subtracted in order to increase the accuracy of a scientific measure.

Figure: Bucket overflow handling using overflow chaining.

46

Comparative analysis of closed and open hashing

Open hashing has been used to construct symbol tables for compilers and assemblers, but closed hashing
is preferable for database systems. The reason is that deletion under open hashing is troublesome. Usually,
compilers and assemblers perform only lookup and insertion operations in their symbol tables. However, in
a database system insertion-deletion occurs frequently. Thus, open hashing is of only minor importance in
database implementation.

Hash Indices

� Hashing can be used not only for
file organization, but also for index-
structure creation.

� A hash index organizes the search-
keys, with their associated record
pointers, into a hash file structure.

� We apply a hash function on a
search key to identify a bucket, and
store the key and its associated
pointers in the bucket (or in
overflow buckets).

� Hash indices are always secondary
indices — if the file itself is
organized using hashing, a separate
primary hash index on it using the
same search-key is unnecessary.
However, we use the term hash
index to refer to both secondary
index structures and hash
organized files.

Static and Dynamic Hashing

In static hashing, we need to fix the set B of bucket addresses. Since most databases grow over time, if
we are to use static hashing for such a database, we have three classes of options:

1. Choose a hash function based on the current size of the database. This option will result in
performance degradation as the database grows.

Figure: Hash collision (bucket overflow) resolved by open
hashing with linear probing (interval=1).
Note that "Ted Baker" has a unique hash, but nevertheless
collided with "Sandra Dee" which had previously collided
with "John Smith".

Figure: Hash index on search key account-number of account file.
 Here, Bi = h(sum of digits of the account number modulo 7)

47

2. Choose a hash function based on the anticipated size of the file at some point of time in future.
Although performance degradation is avoided, a significant amount of space may be wasted.

3. Periodically reorganize the hash structure in response to the file growth. Such reorganization
involves choosing a new hash function, re-computing the hash function on every record in the file
and generating new bucket assignments. This reorganization is massive and time-consuming
operation. Furthermore, it is necessary to forbid access to the file during reorganization.

Dynamic hashing techniques allow the hash function to be modified dynamically to accommodate the
growth or shrinkage of the database while not degrading performance and without any space overhead.
There are several dynamic hashing techniques, for example:

1. Extendable Hashing
2. Linear Hashing

Drawbacks of Hashing

1. Hash function must be chosen when the system is implemented and it cannot be changed easily
thereafter if the file being indexed grows or shrinks.

2. Since the hash function maps search-key values to a fixed set of bucket addresses, space is wasted if
the set of buckets is made large to handle further growth of the file.

3. If the set of buckets is too small, they will contain records of many different search-key values and
bucket overflow can occur. As the file grows, performance suffers.

Comparison of Ordered Indexing and Hashing

To make a wise choice of file organization and indexing techniques for a relation, a database designer
must consider the following issues:

1. Is the cost of periodic re-organization of index or hash structure acceptable?

2. What is the relative frequency of insertion and deletion?

3. Is it desirable to optimize average access time at the expense of increasing worst-case access time?

4. What types of queries are users likely to pose?

This issue is critical to the choice between indexing and hashing.

Queries that specify a single value

Form: select A1, A2, ..., An from r where Ai = c

Average Case: Favors hashing.

 Analysis:

1. Index lookup takes time proportional to log of number of values in r for Ai.
2. Hash structure provides average lookup time that is a small constant (independent of

database size).

Worst Case: Favors Indexing.

 Analysis:

1. In hash structure, worst-case time is proportional to the number of values in r for Ai.
2. In index structure, the worst-case time is still log of number of values in r.

Conclusion: The worst-case lookup time is unlikely to occur with hashing; hence, for these sorts of
queries (having a specified value for the key), a hashing scheme is preferable.

Queries that specify a range of values

Form: select A1, A2, ..., An from r where Ai ≤ c and Ai ≥ c

48

Preferred Scheme: Indexing.

 Analysis:

1. Using an index structure, we can find the bucket for value c1, and then follow the pointer
chain to read the next buckets in alphabetic (or numeric) order until we find c2.

2. If we have a hash structure instead of an index, we can find a bucket for c1 easily, but it is
not easy to find the next bucket in sorted order. Because:

a. A good hash function assigns values randomly to buckets.
b. Each bucket may be assigned many search key values, so we cannot chain them

together.

Conclusion: Index methods are preferable where a range of values is specified in the query.

Multiple-Key Indices

Problem with Multiple Single-Key Indices

If there are two indices on account file, one on branch-name and one on balance, then suppose we have
a query like:

select loan-no from account where branch-name = ′Perryridge ′ and balance = 1000

There are 3 possible strategies to process this query:

1. Use the index on branch-name to find all records pertaining to Perryridge branch. Examine them to
see if balance = 1000.

2. Use the index on balance to find all records pertaining to accounts with balances of 1000. Examine
them to see if branch-name = ‘Perryridge’.

3. Use the index on branch-name to find pointers to records pertaining to ‘Perryridge’ branch. Also, use
the index on balance to find pointers to records pertaining to 1000. Take the intersection of these two
sets of pointers.

The third strategy takes advantage of the existence of multiple indices. This may still not work
well if all the following conditions hold:

a. There are a large number of Perryridge records AND
b. There are a large number of 1000 records AND
c. Only a small number of records pertain to both Perryridge and 1000.

To speed up the intersection operation, special structures such as bitmap indices can be used.

Advantages of Using Multiple-Key Indices

Suppose we have an index on combined search-key (branch-name, balance).

With the where clause where branch-name = ’Perryridge’ and balance = 1000 , the index on the
combined search-key will fetch only records that satisfy both conditions. Using separate indices in less
efficient – we may fetch many records (or pointers) that satisfy only one of the conditions.

It can also efficiently handle where branch-name = ’Perryridge’ and balance < 1000 .

However, it cannot efficiently handle where branch-name < ’Perryridge’ and balance = 1000 .
For each value of branch-name that is less than “Perryridge” in alphabetic order, the system locates records
with a balance value of 1000. However, each record is likely to be in a different disk block, because of the
ordering of records in the file, leading to many I/O operations.

To speed up the processing of general multiple search-key queries (involving one or more comparison
operations), we can use special structures like grid file, R-tree etc.

49

Index Definitions in SQL

Creating an Index

create [unique] index index-name on relation-name (attribute-list)

The attribute-list is the list of attributes in relation r that form the search key for the index.

If the search key is a candidate key, we add the word unique to the definition. In that case,

� If the search-key is not a candidate key, an error message will appear.
� If the index creation succeeds, any attempt to insert a tuple violating this requirement will fail.
� The unique keyword is redundant if primary keys have been defined with integrity constraints

already.

For example, to define an index on branch-name for the branch relation:

create index b-index on branch(branch-name)

Removing an Index

drop index index-name

