DBMS: AN INTERACTIVE TUTORIAL

PostgreSQL

P 7MIcrasofr

=y Visual FoxPro

l\/ll__jSQL®

/\

SGLite / - ORACLE SYB ASE

72881 serveraoos %

m n Microsoft-Office
L. Access

=,
(4) F' b' Innovative RDBMS software
lre lr that's going where you're going

Organized & Prepared By

Sharafat Ibn Mollah Mosharraf
12" Batch (05-06)

Dept. of Computer Science & Engineering

University of Dhaka

Table of Contents

INTRODUCTION TO DATABASE AND DESIGNING RELATIONAL DATABASES ...ttt 1

DATABASE: WHAT IT IS AND WHY [T IS NEEDEDuituituittittnietnettneeaettne et et esnssssssesntssasesnestasssntesnesteeaesseersessniernns 1
DESIGNING A DAT ABASE. ... ctuiituittntite ittt ett et e et e st e sassaa et et aate s et esaa e st b s eaa s st e b e s s s sa s sa s aa e sn s tassansssnsssnsesnsstnsens 1
EXAMPLE DATABASE DESIGN. . .euiiuiituiiitiiieii et et et et st sea e s st e s et e e ta et aa s eaa e st e s aa s et s s b s eaasasaseaa s st e saessnsssntesnsssnseansatnrranss 5

ENTITY-RELATIONSHIP IMMODELouuiiitiiiiiiiiit ittt et e e e et e et e e b e e e e e e e e e et e e e et ea e e ee e e ean e e en e e eeess 7

L 1V T I VAT Ny N 7

[NS (O3 @0 N = = = PN
Entity Sets and Attributes

Types of Attributescccccceeeiiiiics
L= =V T0 T] T o TS £ SS

(000 NS 17 N 57PN
Cardinality Constraints / Mapping Cardinalities A@linality RatioS..............coooi it ceree e 10
PartiCipation CONSIIAINTSiiiiieiie e et cmcc e e e e e e ae e e e e e et e et sa e — e e teeaeeeeraeeaaaaeeeeseesassaaasnnsssrananneeeeeaeaaeees
102 1o 10 F= 111 Y I 0 11 £ ST P SRS

VA =7 S = N S = 1 TP TUSPPPPPPPTRTRIIN

Discriminator / Partial Key 0f @ WEaK ENItY SEL.........cciiiiiiiiiiiiii et e s sesire e e e e e s s st er e e e e e e s e esnabrereaaessssnntbnneeeeas
How the primary key of a weak entity set is formed
Placement of descriptive attributes in a weak pistt
Participation of weak entity Sets in relatioNSNIRS ... et e e e e e e
Weak entity sets — should they be designed asvaliBd attriDULES? ..o 13

SPECIALIZATION AND GENERALIZATION
S 0= oa T 1[4 L1 o] o SR
Generalization.........c.cccoecceeeeeninne.

REDUCTION OFE-R SCHEMAS TO T ABLES ... ciiittiieieiiiieeeeett e e e seet s e e s seeataeeessateeesastaseesastanseeeastaneeeeaannnsaeernranaaeeeees 14
Y 0 o T = 0] 11§V =1 SRR
WWEEK ENTILY SBUS ...ttt ettt et e ettt ettt et e e e e e e e e e e o e e aatatbesbe e e et e e e e e e eaaaaeeeeeaaaannnbnnbensennneees
T Lo] T o ST £ PSPPI

One-to-One Relationship
One-to-Many Relationship

= 1Y (o R @ L= = F= 14 o] 1] 1 o PR TR PRIR 14
= T (oY oL gL A =] o 0T o 11 SRR TP 15
(070 101 0T TSI L= AN 4] 01U (=SSP 15
MUIEIVAIUEA ALLFDULES ...t e sttt e e s sttt e e e e e et b e e e e ennree e e e e e nnsbeeas 15
(€T o 1T o 4= 110] o [PPSR 15
E-RDIAGRAM SYMBOLS AT A GLANCE ...ttt ee e e et et eeeettttt e e e e e e e eaaeaeaeaeassbabaa o e e e eeaaeeeeeeeeababanasaaaeaeaeaaaaaeeeessnnnnnnnnns 16
DML: DATA-MANIPULATION LANGUAGE ...t ettt ettt et et e et et e et e et e ea e eaaae e e eneeaneaenaeenaen 18
DML (DATA-MANIPULATION LANGUAGE): WHAT IT ISuutttttttteeeeeeetaetaaaaaaaaaaesasaaaassussseeeeeeeaaaaaaaaaaaasesaaaaaaannnnssnsenssees 18
QUERY LANGUAGEcetttieiietiitie e e ettt ee e e et e e e e e e et e e e e et e e e e e et e ee e e e taa e e e eetaa e e e eeaa s eaeeessaaeeee b eeeeeban s eesentanseeaeennnen 18
THE SELECTOPERATION/ STATEMENTttttttttttttttaataaaaaaaaaasaaaaaassasteseaeataaaaaaaaaaaaasaaaaaaasnssassesssseseeeeaaaaassessaaaaanansnsnnnes 18
RELATIONAL ALGEBRA ... iieeieteeeeetitts et e e e e e et et eeeseeeaate s s s e e e e e e e et et e e e e e e R R e e e o1 e e e e e e eeeeeeeeeee s nenan e aaeneeeeereeeennnnnnnnnns 21
Fundamental Relational Algebra OPeratioNS ...ttt e et e e e e e e e e e e e e e e e e e e aaaanns 21
THE SEIECHON OPEIALIONiuiiiiiiiii e e iceeeenr ettt e et e e et e e e e e e s s e tb e et e eeeeesassaeseetaeeesaassstbaaeeeaeeesaassstseseaaesesssssbanseeaeeessassnsrneees 21
BN (e el (o) L=Teti[o T g I @] o 1=T =Y o o PP EPPRR PP 21
Composition of the Relational OPEIAtIONS ... oot e et e e e e e e e e s tbe et eeaaaeaaaanstbaeeeaaeeesaannseeeaaeasaaannees 21
(SIS L a1 o] T @] o 1T =1 1] o N OO PPRPRR 22
The Set-DiIfferENCe OPEIALION ... e eeeeeee e ee e ettt e e e ettt et e e e e e s et baeeeeeeea e s e s e ntbeeeeeeaaeeaaannbaeseeaeaesaannnsneeeaaaeeasannnn 22
The CarteSian-ProdUCE OPEIALION......... .. ceeaacieae ettt et e e e e e te et e eeaaeaaaaaeeeeeaaaaaaaaaastaeseeeaaaeeaaaansssaeeaeeaeaassssseeeaaaseasannses 23
THE RENAIME OPEIALIONuvvviiiiiee e i eeeeeea bttt e e e e s e s s b aaeeeeeeeeeassttbeeeaaeeassassstaseeeeaeeassassssbaeeeaeeeesaasbaeaeeeeaesssssssssneneeaesns 24
Additional Relational Algebra OPEIratioNS.....cccco oottt e e e e e e e e e aaaaaaeeesaeaannes 25
The Set-iNtErSECION OPEIALIONiii i ceeeeee ettt e et e ettt e e e e e e e e et eeeeesessttbereeteaeesaassstbaaseeeaeesaasssbssseaaasasanssnsseeeeaaeesssnnnns 26
THE NAUFAl JOIN OPEIALIONuuuiiiiii e ceeeee ettt e e e e et e it e e e e e e st aeeeeaeeessatatereeeaaeesassssaeseeeaeeesaasstseeeaaeeesssnsssnreneaaeens 26
Extended Relational Algebra OPEratiONS..... o i ittt e e e e e e e e e et e bb bbbt e e st e eeeaeaaaaaeaaaaas 27
The Outer Join Operation
(1T gL =1 [14=To I (o =Tt o o (OO PPRPPR
P e [o] (=To T= LI UL o1 o] o TP PPRPPRRPIN
MODIFICATION OF DATABASEceeettutuuuieeeeeeeeteteeesnsnas s s s e s s e e eeeeeeeeeeeeeeeea s s e e e e e e et eeeeeeeess s s e n e e e e e e e eeeennnrnnn e neeeeees
T TS=] 4 1T o TP
D] [T (o] o TP PUPPPTTTT
L8] oo F= 1 (= TSRO PUPPPTTTT
INDEXING AND HASHING ... oottt oottt et e et et ettt ea e et e et e ea e et e ea e ea e e e e e e et eneeaaeean s eanaesneesnnennaennaaes 33

BASIC CONCEPTS -1ttt ettt tt ittt e e e e e e e e e e et e e s bbbt e ettt ettt e e e e e e e e e e e e oa e o aEah bbb b e e b e e e et e e e e e e e e e 44 e 44 sk be bbbt be s ee e e e e e e e e e e e eeeneeeannnnn 33

I8 =TS0 1 o Lo =SSP 33
Index Technique ChoOSING FACIOIS........cciiiiiiie i e e e e e s e e e e e e e et e eaaeaeeaeeseesasannnsnnreneeees 33
ORDEREDINDICES

Primary / Clustering Index...................
Secondary / Non-Clustering Index
INAEX-SEUUENTIAI FIIESeeeeeieee ettt oo oo oottt e e e e e e aaae et et eeaeeae e ntaeeeeeeeaeeae s nnbbeeeeaaeesaannnsbneeeaaeeasaannnenns
Contents of an index record / entry
Types of ordered indices
D= IS [T 1= OO PSPPI
Dense iNdeX fOr PrIMAIY INAICESooiiieiiii et e oottt e e e e e ettt e et e e e e e e s e an e beteeeeaaeeaaaansbaeseaaaaesansssaneeaaaeeasannnes
Another implementation of dense indices
S 2= LT [T [PP
Comparative Analysis of Dense and Sparse Index..
Yo oo T I {ir= o L= T o) 1 U PRT RSP
Why this trade-off is good
MUII-LEVEI INAICES.....c ettt ettt e et e e e e e e e e e e a e et bttt e sttt et eeeeaeaaaaaaeeeesaaannsbnbbnnnneeeeeas
The problem with single-level indices
Solution to this problem
Secondary Indices
B TREEINDEXvvttttestetteteetestesteseetestesteseeseasessesess et esseseeae s e s s ese e b e b e st ese e b e s ese s e s e s e s s ebeebe b e st ese et e b esseseebessenenaesseneens
The Problem with Indexed-Sequential File Organali..............coooiuuiiiiiiiiii e 37
How B" Tree Index Solves the Problem
SHTUCHUIE OF @ B TTEE ..uieviieietieie ettt ettt cmmnis et e st e te st et e st et e es e e e s e e s e na e e e seese e eseeseese et e s aneasenseneeneenensenes
Operations on a BTreeccccceevvevevecicereenenee,
Adding Records to aBITeeccccceveveeeeereeneaen.
Deleting records from a'Blree
B* Tree File Organization
T I = =] = S
Yo A=Y ak = To [T o 2 T I == P
Disdvantages of B-Tree

LS TN
The Problem with Sequential File Organization anaAHHashing SOIVES It ..., 43
[b TS O | L @ o T= T T2 Vi o] 1SRRI 43
Manipulation of ReCOrds iN HASH FIlES........ oottt e e e e e e e e e e s 43
[=] A T VT od 10 o = R 43
Distribution Qualities for Choosing @ Hash FUNCHON............iiiiiiiiiiiiic e e e e e e s saraer e e e e e e as 44
Some Examples lllustrating TheSe QUAIILIES.cc..uiuiiiiiie e e e e e e e e e e e st r e e e e e e s esbaraeeaeeeseasnnees 44
How Hash Functions Should DE DESIGNEM ... ceceeeeeiieieii ittt e e e s e e e e e s e st e e e e e e s easaabbareaaeesssntbraeeeeas 44
Handling of BUCKEE OVEITIOWS ettt et e e e e e e e e e e bbbttt et et eeeaaaaaaeeeesaaaaannnnnnes 44
CauSES Of DUCKEL OVEITIOWS ...t ettt e e et e e e ettt e e e bttt e e s be e e e ebb et e e snnbeeeesnebeee s 45
ReAUCING DUCKET OVEITIOWS....... ettt ettt e e oo ettt et e e e e e e e e et e et e e e e e e e s e e anseeeeaaeeeeansnnneeeaaaaeas 45
HaNdIING DUCKET OVEITIOWScooii ettt oottt e e e e oo ookt et e e e e e e e e s nnaeeeeeeeaeeaansbseeeaaaeeeeaannnnneneas 45
[F=] LT [Tt PR PERR 46
Sy = (o3 T a o I DY/ F= La Tl o F= 1= 11T SRR 46
[o A1 o F= (o S o) = T 11 o PR 47
COMPARISON OFORDEREDINDEXING AND HASHINGettttitiia e eeeeeeeeeieitttii s s e e e e e aaeeaeeeeeestbsban e e e e e eaaaaaeeeesssennnnnannns 47
IMULTIPLE-KEY INDICES. ...t ittt e ettt ittt et e oo et ettt e e et ee ettt oo 42422 et e ettt ettt e b e e oo e e e e aeaaeeeeeeseebabb s e e e e eaaaeeeeentnnbnnanns 48

Problem with Multiple Single-Key Indices
Advantages of Using Multiple-Key Indices.....

INDEX DEFINITIONS INSQL
Creating an Index..............
Removing an Index

Meanings of Special Formatting used

Formatting Meaning Example
Bold text Technical terms in Database tuple, one-to-many
Italic text Attribute names, table names | accountcustomer-name

Dark red colored text

Topic heading

Designing a database

Dark red colored text and objec
within adiagram or table

tNewly added item compared to
previous diagram or table or tex

t

Blue colored text

Points to be remembered

What we've learnt from here is that, when ..

Blue colored text under a figure

Figure Caption

Figure 1: ...

Red colored text

Conclusion

To sum-up, we have ...

Introduction to Database and Designing Relational Databases

Database: What it is and why it is needed
A databasas a structured collection of records or data ihatored in a computer system.

Fine. But we can implement a database using filege-ean write a program to put some information
into a file and when needed, we can retrieve tifarination. Then what's the point of introducingaurse
on databases???

Well, that’s true... But think about this situatiosuppose your employer wants to managsuaent
database. So you write a file containing studeciess, roll number and marks in each subject. Nawy
employer wants to get the list of students who Haved in a particular course. You write some coadle
display the list. However, some time later, youpéayer wants to get the list of students who scaéxé&éh a
particular course. You again write some code tpldisthe list. Now, once again, your employer wahts
total number of students in a particular class. Yiaue to modify your program again. But how manyeis
are you going to take the pain of modifying youde®

If there were such a system which would instarglypond to your any kind of query within a database,
then that would make your life much comfortableréHeomes the Database Management System (DBMS).
This system provides you with an easy way to shoikretrieve data and handle all your queries athase
data. There are much more functionalities of a DBbfSourse.

The objective of our course on DBMS is to lehow toimplement, manage and use a DBMS.
At the preliminary level, for the time being, ouam learning objectives are:

1. Designing a database (efficiently).
2. Using queries (efficiently) to store data into aattieve data from a database.

Designing a database
Suppose, we have to design a database to managéiadpsystem.

First, we need to know what data we should neednémage a banking system. Let's start with
information on customers. For each customer, we reaord hisname street addresscity, and most
importantly, hisaccount numbein the bank. Theseame street addres<ity andaccount numbeare called
attributes or fields of customer

Now that we’ve got our attributes, let’s try toadish a relationship among them. In this casg,gtiite
simple: a customer with a nameame lives in ‘street addressn city ‘city’ and has an account number
specified by the attribut@tcount numbein the bank.

In relational database modelwe depict the above relation by placing the lattes into a box, which is
called aschemaand giving a name to the schema, somewhat likéotloving:

customer

customer-name
customer-street
customer-city

account-number

The customerrelation (also called @able) with two sampleecords (also calledows ortuples') might
be as follows:

! Tuple: (computing and mathematics) a finite sequenagbicts; a structure containing multiple parts.
1

customer-name

customer-street | customer-city | account-number
Somebody Mirpur Road Dhaka A-101
Anybody XYZ Road Khagrachhori A-104

A question may arise — why would we ever need tiindea relationship among the attributes? Well,
we’'ll find the answer soon...

Let’'s take a closer look at the relation. A customan live at only one street address and in only o
city at a time. So, we can say that the relatiqgmsbicustomer-namwith customer-streesindcustomer-city
areone-to-one But as foraccount-numbemwe know that a customer might have more thanameeunt at a
time; hence the relationship afistomer-nameith account-numbeis one-to-many:.

/

customer-name ———»

—» One-to-one
One-to-many

Legend

account-number

Figure 1: Relationships among the attributescagtomettable.

So why does it matter? Suppose, the customer flwoweatable name8omebodyas three accounts at
the bank (A-101, A-102 and A-103). Then we canestbat information into the table as follows:

customer-name
Somebody

customer-street
Mirpur Road

customer-city | account-number
Dhaka | A-101, A-102, A-103

Now, when we query for the details of the custombo has an account numberAf103 we have to
specifically search through each field for the artonumber; thus implementing our own search progra
(as the built-in querpaturally do not search into a field). So, the objectiv®BMS cannot be achieved.

However, we can implement a work-around for thebfmm by placing each account number in a single
record like the following:

But this makes several copies

customer-name

customer -street

customer-city

account-number

Somebody Mirpur Road Dhaka A-101
Somebody Mirpur Road Dhaka A-102
Somebody Mirpur Road Dhaka A-103

of the same dataharsdwvastes st

orage space:

customer-name

customer -street

customer-city

account-number

Somebody Mirpur Road Dhaka A-101
Somebody Mirpur Road Dhaka A-102
data Somebody | Mirpur Road Dhaka A-103
To solve both the problems, let’s split up the e¢ahto two tables as below:
account-number | customer-name
customer-name | customer-street | customer-city A-101 Somebody
Somebody Mirpur Road Dhaka A-102 Somebod)
A-103 Somebody
customer account

Now, when we query for the details of the customko has an account numberAf103 theaccount
table will be queried first. From the account talievill be found that a customer nam8dmebodyolds
that account number. Next, the details of the custowill be queried from theustomertable using that
customer nameSomebody Thus, we’ll be able to easily and successfublyrieve all the necessary data

using a DBMS.

In the two tables, the fieldustomer-names acting as a link between records.

% There are some rules for designing efficient dasab, one of which is “each field must contiomic data” — i.e., data

which representsnly onething, not several things.

2

What we've learnt from here is that, wheorge-to-manyelationship exists — suppose — from fiéldo
field B, we’ll create two tables: in the first one, w&kéep the fieldd, and in the second one, we’ll place the
field B and also the field.

This is the reason why we need to define relatipssamong the attributes — so that we can disgibut
the attributes among different tables when desgaimd implementing a database.

Well, if you haven't figured out yet, there is aoptem with the above solution. We all know thaisit
possible that any two customers might have the seme. Consider the following situation:

customer-name | customer-street | customer-city account-number | customer-name
Somebody Mirpur Road Dhaka A-101 Anybody
Somebody Aga Kha Road Bogra A-102 Anybody
Anybody XYZ Road Khagrachhori A-103 Somebody
customer account

Fromaccounttable, we find that accouAt103is owned bySomebodyNow, fromcustomettable, how
can we determine whether tl8®mebodys the one living irDhaka or the one iBogra?

It seems that we need to use such a linking freltcounttable, which camniquelyidentify a record in
the customertable. So, which field itustomertable uniquely indentifies a record therein? Thaight be
several customers who have the same name or lithee &ame street or even in the same city. Thexeéor
value may appear more than once in any of thedield

In such cases where none of the attributes uniqdeltifies a record in the table, we have to ufield
— usually namedd — in which unique integer values are assigne@#&ah record. Thus, the above two tables
become:

customer-id | customer-name | customer-street | customer-city account-number | customer-id
1 Somebody Mirpur Road Dhaka A-101 3
2 Somebody Aga Kha Road Bogra A-102 3
3 Anybody XYZ Road Khagrachhoyi A-103 1
customer account

Now we can definitely say that the owner of theocart A-103is a customer namefomebodywho
lives inDhaka(and not inBogra).

A field which uniquely identifies a record in a bahbis called aprimary key. In customertable,
customer-ids a primary key. Again, a primary key which iedsas a field in another table for linking (i.e.,
relationship establishing) purposes, is callddraign key. In accounttable,customer-idis a foreign key.
Primary key and foreign key attributes are usuatigerlinedto express their nature.

customer-id | customer-name | customer-street | customer-city account-number | customer-id
1 Somebody Mirpur Road Dhaka A-101 3
2 Somebody Aga Kha Road Bogra A-102 3
3 Anybody XYZ Road Khagrachhoyi A-103 1
customer account

Note that we can also define a primary key foraheount table, and it would be thecount-number
field.

So what we've learnt from this section is that veech a primary key to uniquely identify a recordain
table, and we need to uniquely identify a record table to properly establish relationship amadigpates;
thus design an efficient database. However, prinkany is also used to prevent inserting records kwhic
contain duplicate primary key field values.

You might have started thinking, “Well, we've solivéhe problem quite well!'” But you're wrong! It's
true that a customer might have more than one atcatua time; but it's also true that more than one

3

customer might own a single account (which we gafit-accounj. So, the actual relationship between
customer-namandaccount-numbeis many-to-many.

/

customer-name ——»

—>» One-to-one
Many-to-many

Legend

account-number

Figure 2: Relationships among the attributescagtomettable.

Now, what happens when the account nunfé04is owned by both the customers nanSemebody
and Anybody In theaccounttable, we’ll either have to break the ruleaddmic data or we’ll have to keep
duplicate records. Both of the solutions are ungiad®e.

So, again, let’s split up the taldecountinto two tables:

Primary Key] MQn Key) @gn Key

customer- | customer- customer- customer- account account | customer-
id name street city -number -number id
1 Somebody] Mirpur Road Dhaka A-101 A-101 3
2 Somebody] Aga Kha Road Bogra A-102 A-102 3
3 Anybody XYZ Road Khagrachhoyi A-103 A-103 1
A-104 1
A-104 3
customer account depositor

What we've done here is, we've createlthlt table namedlepositorcontaining two foreign keys — each
of which refers to the corresponding primary keythe tablescustomerand account Thus, from the
depositortable, we can say that the account nunfé04is owned by two customers whasks arel and
3. And then from theustomertable, we can find the details about those custeniée interesting fact is
that, the previous queries we’ve tried can als@kecuted easily from these tables with this com&gan.
Why don’t you try those for yourself right now?

[Umm... you might think that thaccounttable seems to be lonely. However, when you’lbbsigning
a database in a real situation, you’'ll definitelydf that theaccounttable does not consist of only one
attribute. It will contain more than one fields,r fexample,balance— the amount of money currently
available under that account number.]

What we’ve learnt from this section is that whemany-to-manyelationship exists — suppose — from
field A to field B, we'll create three tables: in the first one, Wkédep the fieldA and the fields related to it;
in the second one, we’'ll place the fidddand the fields related to it; and finally, in tlast table, we’ll put
two fields from the previous two tables which amemary keys of those tables. The last table is pust
linking table.

To sum-up, we have to follow the following stepsenfdesigning a database:

1. ldentify which attributes we need and place theto relevant tables.
2. ldentify the primary keys of the tables.
3. ldentify the relations among the attributes and ifiyaddble design accordingly.

Note that these steps are fwémary steps for designing a database. There are othigessto consider
when designing a database efficiently. We’ll disctigse later.

Example Database Design
Let's design a database for bank management.

First, we have to determine which information weechéo manage the bank. Suppose we need the
following information:

1. Branch details — which might include branch nanmanbh city and total assets of that branch.

2. Customer details — customer name, his street asldresthe city he lives in.

3. Account details — the account numbers, which brasthe accounts are from, their owners and their
balances.

4. Loan details — the loan numbers, which branchesldbhas are from, their borrowers and their
amounts.

Next, let’s try to figure out the relationships amgothese attributes so that we can determine which
tables we should need and which attributes shoulw gvhich table.

First, we've to figure out which attributes avet related to each-other. The bank details are nanin
way related to customer details. So, we can safedgte two tables named — for exampleranch and
customerWe can fill those tables with necessary attributbranch-namebranch-cityandassetsn branch
table; andcustomer-namecustomer-streeandcustomer-cityin customertable. Our database schema up to
this point should look like the following:

branch customer
branch-name customer-name
branch-city customer-street
assets customer-city

Now, the account details seems to contain attrébwteich relate to attributes in both branch detanld
customer details. So, we can create a table nameoulats and put the necessary attributascqunt-
number branch-namendbalancg in it.

branch account customer
branch-name<—‘ account-numbef » customer-name
branch-city branch-name customer-street
assets customer-name customer-city

balance

Note that théoranch-nameattribute inaccounttable refers to thbranch-namaeattribute inbranchtable.
So, branch-nameshould uniquely identify each recordbranchtable. In other word$yranch-nameshould
be a primary key. Let'assumebranch-name is unique for the bank, i.e., alllilenches of the bank have
different names. So, we can say thiatnch-namas a primary key ibranchtable, and hence, a foreign key
in accounttable.

Again, the customer-name attribute in account tadlers to thecustomer-namattribute incustomer
table. Let's assume that customer names are uifai®ugh in real situation it is not, let’'s justsumat
for ease of our design), and thasstomer-nameés a primary key ircustomertable and a foreign key in
accounttable.

Note that when drawing a schema diagram for a datglihe following rules are maintained:
> Each relation appears as a box, with the attribigessl inside it and the relation namlgoveit.

> If there are primary key attributes, a horizonia¢ Icrosses the box, with primary key attributetelil
above the line.

» Itis customary to list the primary key attributisa relation schema before the other attributes.

> Foreign key dependencies appear as arrows frofotbign key attributes of the referencing relation
(or table — both denotes the same thing) to theamy key of the referenced relation.

Okay, let’s get back to our business. If we analymee carefully, we can confirm that a customer may
have multiple accounts and a single account cashbaeed by multiple customers. So, the relationship
customer-namend account-numbers many-to-manySo, according to what we learned previouslyslet’
split-up the account table and design a link talalmed — for examplelepositor— like the following:

branch account depositor customer

branch-name<—_ account—numbe-<—| customer-name customer-name

branch-city ' branch-name account-number customer-street
assets balance customer-city

\ 4

Now remains théoan details It's much like theaccount detailsn relationship’s point of view. We need
a foreign keybranch-nameand we know that the relationship betwé@sn-numberandcustomer-names
many-to-manyas a customer may take multiple loans and aeilggin can be jointly taken by multiple
customers). So, we can easily design a table n&wmaeand a link table named — for examglerrower.

branch account depositor customer
branch-name . account-numbef¢— | customer-name —3| customer-name
branch-city branch-name account-number customer-street
assets balance customer-city
loan borrower
loan-number customer-name
g loan-number

branch-name
amount

So that’s our final database schema diagram fob#m& management system.

We can represent a schema diagram in textual femayn asrelation schema The relation schema of
the above diagram is as follows:

Branch_schema = (branch-narbeanch-city, assets)
Customer_schema = (customer-namestomer-street, customer-city)

Account_schema = (account-numberanch-name, balance)
Loan_schema = (loan-numbé&ranch-name, amount)

Borrower_schema = (customer-name, loan-nujnber
Depositor_schema = (customer-name, account-nymber

Note that in relation schema, no foreign relatisrdepicted. Further note that the schema namds star

with uppercase letters.
So, the general form of a relation schema is:
S = (A, Ay ..., Ay, whereA stands foAttribute

A table filled with some records is calledelation instanceA relation instance on a schem& can be
written as:

r(S) or r(Ay Ay ..., A)
For example, to denote thatcountis a relation o\ccount_schemave can write:
account(Account_schema) or account(account-numbgbranch-name, balance)

Note that relation instance names start with loasedetters.

Entity-Relationship Model

E-R Model: What it is

The entity-relationship (E-R) data model perceithes real world as consisting of basic objects,echll
entities, and relationships among these objectwa#t developed to facilitate database design lowaip
specification of an enterprise schema, which repressthe overall logical structure of a database E-R
data model is one of several semantic data mothelssemantic aspect of the model lies in its regragion
of the meaning of the data. The E-R model is vasful in mapping the meanings and interactionsal-r
world enterprises onto a conceptual schema.

Basic Concepts
The E-R data model employs three basic notiensty setsrelationship setsandattributes

Entity Sets and Attributes

An entity is a “thing” or “object” in the real world that distinguishable from all other objects. For
example, each person in an enterprise is an edtityentity has a set of properties. For examplpergon
has a name, address etc.

An entity setis a set of entities of the same type that sHasesame properties, or attributes. The set of
all persons who are customers at a given banlefample, can be defined as the entitycsistomer

An entity is represented by a setaifributes. Attributes are descriptive properties possessedath
member of an entity set. The designation of anbati for an entity set expresses that the datatiases
similar information concerning each entity in theity set; however, each entity may have its owmouedor
each attribute. Possible attributes of thistomerentity set areustomer-igcustomer-namecustomer-street
andcustomer-city

Each entity has walue for each of its attributes. For instance, a paldiccustomerentity may have the
value321-12-3123or customer-id the valueJonesfor customer-namethe valueMain for customer-street
and the valuéiarrison for customer-city

For each attribute, there is a set of permittedesl called thdomain or value setof that attribute. The
domain of attributeustomer-namenight be the set of all text strings of a cerlaimgth.

A database thus includes a collection of entitg,seéich of which contains any number of entitiethef
same type. The following figure shows part of akbdatabase that consists of two entity sets: cust@nd
loan:

customer-street
customer-id loan-no
customer-name | amount

customer-street

customer loan

customer loan customer-city
Figure (a): E-R diagram notations for entity sets and attribute Figure (b): Alternative E-R diagram notations.
customer-id | customer-name customer-street customer-gity loan-no amount
321-12-3123 Jones Main Harrison L-17 1000
321-12-3124 Smith North Rye L-23 500
119-15-4569 Hayes Dupont Harrison L-46 9000
123-45-6789 Adams Spring Princeton L-12 30000
customel loan

Figure (c): Relation instances @ustomerandloan.

7

Types of Attributes
An attribute, as used in the E-R model, can beathtarized by the following attribute types:
1. Simple and Composite Attributes
Attributes thatcannotbe divided into subparts are cal&thple attributes.
For exampletelephone-npsalary etc.
Attributes thattan be divided into subparts are calleampositeattributes.

For example, the composite attribaigdresscan be divided into attributestreet-numberstreet-
nameandapartment-number

2. Single-valued and multivalued attributes
Attributes that have a single value for a particelatity are calledingle-valuedattributes.
For examplegcustomer-namesalary etc.
Attributes that have multiple values for a parteaugntity are calledhultivalued attributes.
For example, aemployeemay have multiple telephone numbers. So, thebat&ielephone-no

is a multivalued attribute.

Figure: Symbol for multivalued attribute in E-R diagram.

3. Derived Attributes

If the value of an attribute can be derived from #alues of other related attributes or entitibsnt
that attribute is called @erived attribute.

The attribute from which another attribute is dedvs called thdaseor stored attribute.
The value of a derived attribute is not stored,ipaomputed when required.

For example, if an entity setmployeehas two attributedate-of-birthandage then the attribute
ageis a derived attribute and the attribdege-of-birthis the base or stored attribute.

_-

Figure: Symbol for derived attribute in E-R diagram.

Relationship Sets
A relationship is an association among several entities.

For example, we can define a relationship that @ates customer Hayes with loan L-15. This
relationship specifies that Hayes is a customdn i@&n number L-15.

A relationship setis a set of relationships of the same type.

For example, consider the two entity saistomerandloan. We define the relationship dabrrower to
denote the association between customers and tikeldi@ns that the customers have. The followingrig

depicts this association:
customer borrower loan

Figure: E-R diagram focustomerandloan entity sets and the relationship betrower.

8

The association between entity sets is referreasfmarticipation ; that is, the entity sets;, E, ..., E,
participate in relationship seR.

A relationship instancein an E-R schema represents an association bettveamamed entities in the
real-world enterprise that is being modeled.

As an illustration, the individual customer entijayes, who has customer identifier 677-89-9011, and
the loan entity L-15 participate in a relationsimptance oborrower. This relationship instance represents
that, in the real-world enterprise, the personechilayes who holds customer-id 677-89-9011 hasttie
loan that is numbered L-15.

A relationship may also have attributes caltlgcriptive attributes. For example, consider the entity
setscustomerandloan and the relationship sborrower. We could associate the attribakgte-issuedo that
relationship to specify the date when the loan issised:

customer borrower loan

Figure: Descriptive attributelate-issued

Most of the relationship sets in a database systenbinary — that is, they involve two entity sets.
Occasionally, however, relationship sets involveartban two entity sets.

As an example, consider the entity setsployegbranch andjob. Examples of job entities could
include manager, teller, auditor, and so on. Jotitien may have the attributa#tle and level The
relationship setworks-onamongemployeebranch andjob is an example of #&ernary relationship. A
ternary relationship among Jones, Perryridge, aadager indicates that Jones acts as a managee at th
Perryridge branch. Jones could also act as audglitttre Downtown branch, which would be represebted
another relationship. Yet another relationship doogé between Smith, Downtown, and teller, indigatin
Smith acts as a teller at the Downtown branch.

job
employerid /\ brancl-stree brancl-city
works-on

branch

employee

Figure: Ternary relationship.

The number of entity sets that participate in atrehship set is called thoegreeof the relationship set.
A binary relationship set is of degree 2; a termafgtionship set is of degree 3.

Constraints

An E-R enterprise schema may define certain canssrdo which the contents of a database must
conform. Different types of constraints can be dea in E-R model:

1. Cardinality Constraints ene-to-ongeone-to-manymany-to-onemany-to-many

2. Participation Constraintspartial, total

3. Key Constraints superkeycandidate keyprimary key

Cardinality Constraints / Mapping Cardinalities / Cardinality Ratios

Cardinality constraints express the number of entities to which anothétyecan be associated via a
relationship set.

For a binary relationship s&between entity setd andB, the mapping cardinality must be one of the
following:

» One to one.An entity inA is associated with at most one entityBinrand an entity ifB is associated

with at most one entity iA.
A B Figure (b): E-R diagram notation for
one-to-one relationship

R
A B Figure (c): Alternative notation.

Figure (a): One-to-one mapping cardinality.

» One to many.An entity inA is associated with any number (zero or more) tifiegs inB. An entity
in B, however, can be associated with at most oneyenth.

A B Figure (b): E-R diagram notation for
one-to-many relationship

A < B Figure (c): Alternative notation.

Figure (a): One-to-many mapping cardinality.

» Many to one.An entity inA is associated with at most one entityBinAn entity inB, however, can
be associated with any number (zero or more) afienin A.

A B Figure (b): E-R diagram notation for
many-to-one relationship

. R . . .
A B Figure (c): Alternative notation.

Figure (a): many-to-one mapping cardinality.

» Many to many. An entity inA is associated with any number (zero or more) tifies in B, and an
entity inB is associated with any number (zero or more) tfieainA.

A B Figure (b): E-R diagram notation for
many-to-many relationship

A D R < B Figure (c): Alternative notation.

Figure (a): many-to-many mapping cardinality.

10

Participation Constraints
The participation constraints used in E-R model are

1. Total
2. Partial

The participation of an entity sé& in a relationship seR is said to betotal if every entity inE
participates in at least one relationshigRinlf only some entities it participate in relationships iR, the
participation of entity sk in relationshipR is said to beatrtial .

For example, we expect evelgan entity to be related to at least oogstomerthrough theborrower
relationship. Therefore the participationla@n in the relationship sétorroweris total.

In contrast, an individual can be a bank custonmegtirer or not she has a loan with the bank. Hatce,
is possible that only some of tlsestomerentities are related to tHean entity set through thborrower
relationship, and the participation @istomerin theborrowerrelationship set is therefore partial.

Ok

Figure: E-R notation for total participation of entity setrelationship.

Cardinality Limits

E-R diagrams also provide away to indicate more ger constraints on the number of times each
entity participates in relationships in a relatioipsset.

An edge between an entity set and a binary relslipnset can have an associatashimum and
maximumcardinality, shown in the forin.h, wherel is the minimum ant the maximum cardinality.

A minimum value of 1 indicates total participatiohthe entity set in the relationship set.

A maximum value of 1 indicates that the entity pgvates in at most one relationship, while a
maximum values indicates no limit.

Note that a label h.on an edge is equivalent to a double line.

For example, consider the following figure. The edmetween loan and borrower has a cardinality
constraint of 1..1, meaning the minimum and the imar cardinality are both 1. That is, each loan imus
have exactly one associated customer. The limitdh.the edge from customer to borrower indicatesaha
customer can have zero or more loans. Thus, tiatiaeship borrower is one to many from customer to
loan, and further the participation of loan in loever is total.

ustomer-name customer-street
Giolen il

customer borrower loan

Figure: Cardinality limits on relationship sets.

Weak Entity Sets
An entity set that do not have sufficient attrilsute form a primary key is calledneak entity set
An entity set that has a primary key is termedrang entity set

As an illustration, consider the entity ggayer, which has two attributes rameand number Now,
namecannot be a primary key as there might be mora thee player with the same name. However,
numberis unique for a particular team, but differentmsahave the same playaumber For example, there

11

might be playeA with number 1 of teanX, and playeA with number 1 of tean¥. So, the entity sqilayer
cannot be complete without being somehow assocvwaitbdhe entity seteam

As another illustration, consider the entity paymentwhich has the three attributggyment-number
payment-dateand payment-amountPayment numbers are typically sequential numistesting from 1,
generated separately for each loan payment. Thiimugh each payment entity is distinct, paymenots f
different loans may share the same payment nunibes, this entity set does not have a primary kag;a

weak entity set.

. /\
loan /-: payment

Figure: E-R diagram with a weak entity set.

» For a weak entity set to be meaningful, it mustalssociated with another entity set, called the
identifying or owner entity set

» Every weak entity must be associated with an ifigng entity; that is, the weak entity set is stod
be existence dependenobn the identifying entity set. The identifying #ptset is said taown the
weak entity set that it identifies.

» The relationship associating the weak entity sethvihe identifying entity set is called the
identifying relationship.

» The identifying relationship ixany to ondrom the weak entity set to the identifying ensgt, and
the participation of the weak entity set in thatieinship igotal.

> In our example, the identifying entity set foayments loan, and a relationshifpan-paymenthat
associates payment entities with their correspanldian entities is the identifying relationship.

Discriminator / Partial Key of a Weak Entity Set

Although a weak entity set does not have a prinkagy we nevertheless need a means of distinguishing
among all those entities in the weak entity set depend on one particular strong entity. seriminator
or partial key of a weak entity set is a set of attributes tilat\e this distinction to be made.

For example, the discriminator of the weak entélypmyments the attributgpayment-numbessince, for
each loan, a payment number uniquely identifiessimgle payment for that loan.
How the primary key of a weak entity set is formed

The primary key of a weak entity set is formed Iy primary key of the identifying entity set, plire
weak entity set’s discriminator.

In the case of the entity spaymentits primary key is fpan-numbey payment-numbéy where loan-
numberis the primary key of the identifying entity seamelyloan, and payment-numbedistinguishes
payment entities within the same loan.

Placement of descriptive attributes in a weak entity set

The identifying relationship set should have nocdesive attributes, since any required attributas be
associated with the weak entity set.

Participation of weak entity sets in relationships

» A weak entity set can participate in relationshogiger than the identifying relationship.

12

For instance, th@aymententity could participate in a relationship withethccountentity set,
identifying the account from which the payment weede.

» A weak entity set may participate as owner in anidying relationship with another weak entity
set.

» ltis also possible to have a weak entity set witire than one identifying entity set.

A particular weak entity would then be identifieg B combination of entities, one from each
identifying entity set.

The primary key of the weak entity set would consikthe union of the primary keys of the
identifying entity sets, plus the discriminatortbé weak entity set.

Weak entity sets — should they be designed as multivalued attributes?

In some cases, the database designer may choegprass a weak entity set as a multivalued conmgosit
attribute of the owner entity set.

In our example, this alternative would require thia entity setoan have a multivalued, composite
attributepayment consisting opayment-numbepayment-dateandpayment-amount

A weak entity set may be more appropriately modeledan attribute if it participates in only the
identifying relationship, and if it has few attriles.

Conversely, a weak-entity set representation witeraptly model a situation where the set partteipa
in relationships other than the identifying relasbip, and where the weak entity set has sevdrddwaes.

Specialization and Generalization

Specialization
The process of designating subgroupings withinrdityeset is callegpecialization

For example, consider an entity person with attributesname greetandcity. A person may be further
classified as @ustomeror anemployeeEach of these person types is described by afs#tributes that
includes all the attributes of entity set persousppossibly additional attributes. For exampmestomer
entities may be described further by the attribmutstomer-igl whereasemployeeentities may be described
further by the attributesmployee-icandsalary. The specialization gfersonallows us to distinguish among
persons according to whether they amgployee®sr customers

Generalization

There are similarities between tbestomerentity set and themployeeentity set in the sense that they
have several attributes in common. This commonalay be expressed lgeneralization, which is a
containment relationship that exists betwedrgaer-levelentity set and one or mol@wver-levelentity sets.

In our example, person is the higher-level entélyand customer and employee are lower-level es¢ity.
Higher- and lower-level entity sets also may beigieded by the termsuperclass and subclass
respectively. Th@ersonentity set is the superclass of thestomerandemployeesubclasses.

@SU H

ISA

credit-rating

l emph}yee ‘ \ customer ‘

Figure: Specialization and Generalizatiohldte: ISA means “is g’
13

Reduction of E-R Schemas to Tables

Strong Entity Sets

E E(Al! A21 ---,An)
E-R Schema Relational Schema
Weak Entity Sets
— — payment-date
@n-num@ C;malmrj %___-)
\ : payment-nuriber @menmmou‘ﬁ“‘v
N ~ /
AN\
N
///
E-R Schema

loan (oan-numberamount)

paymentlpan-number, payment-numbhg@ayment-date, payment-amount)

Relational Schema

Relationship Sets

One-to-One Relationship

E, [«—< : Se——>
1 EZ E (Alv AZ, ...,An, Bl, BZ, sy Bn)

E-R Schema Relational Schema

One-to-Many Relationship

R E

E

A

E-R Schema

E1 (A, A . AY)
E> (B1, A1, By, ..., Bn, Cy, Cy, ..., Cp)

Relational Schema

Many-to-One Relationship
Just the reverse of one-to-many

14

Many-to-Many Relationship

E:
E-R Schema
Ei (A, Ay, ..., AY)
E> (B, By, ..., Bn)

R (Aq, B1, Cy, Cy, ..

Relational Schema

Composite Attributes

E-R Schema

Multivalued Attributes

E
E-R Schema
Generalization
Crame> Gtreet > Ceity
person
: ISA
\\
| employee ‘ | customer |
E-R Schema

. (e

credit-rating

E

- Cn)

E (A1, Az, By, By)

Relational Schema

E (A, A2)
E_A(As, A)

Relational Schema

person person-id name, street, city)

employeegerson-id salary)
customer [person-id credit-rating)

Relational Schema

E-R Diagram Symbols at a Glance

entity set attribute

multivalued

b e

weak entify set it
relationship set . - _A_ -:} derived attribute
identifying total

relationship
set for weak
entty set

E participation
of entity set
in relationship

discriminating
primary key attribute of
weak entity set
many-to-one
relationship

many-to-many
relationship

o097

AKX

one-to-one] cardinality
relationship limiks
role- ISA
name

(spedalization or
generalization}

E |moleindicator

disjoint
generalization

total
generalizabion

<
447

disjoint

Figure: Symbols used in E-R diagram.

E
entity set E with Al
attributes Al, AZ, A3
and primary key Al Al
A3
many-to-many . * - R

-

relationship

one-to-one 1 1 K
relationship

K

many-to-one - 1

relationship

Figure: Alternative E-R notations.

16

1. entity sets customer

and attributes

Llgfomer-ia
Customer-ndme
cusiomer-sirsgt

customer-cify

2. relationships “ ralel o roleZ E [j ralel R role? E

3. cardinality = 0.1 {.1 R
constraints ﬂ o - E E - G..‘EI

(overlapping persen

4. generalizabion and generaliza tion) b
specialization 1%7

| customer I | anplayes I

|u,u'.tﬂmer | | employves |

(isjoirt [en]

pgeners lization)
A lisfoini

[sustomer | | employee |

|1:|.|s-t'nmer | | employes |

E-R diagram dassdisgram in UML

Figure: Symbols used in the UML class diagram notation.

17

DML: Data-Manipulation Language

So far we've seen how to use table manipulationmands §orry, we couldn’t include the commands
due to lack of time. ®]. Now we’ll observe how to put data into tablestrieve data from tables and
manipulate these data.

DML (Data-Manipulation Language): What it is

A data-manipulation languages a language that enables users to access opufetei data as organized
by the appropriate data model.

Data-manipulation is

» The retrieval of information stored in the database
» The insertion of new information into the database
» The deletion of information from the database

» The modification of information stored in the daab

Query Language

A queryis a statement requesting the retrieval of infdroma The portion of a DML that involves
information retrieval is called @uery languageAlthough technically incorrect, it is common piiae to use
the termgyuery languagenddata-manipulation languaggynonymously.

The SELECT Operation / Statement

The SELECT statement is used to retrieve information from ttetabase according to provided
conditions.

To demonstrate the use SELECTstatement, let’'s assume the following two relatimstances.

customer _name| customer_street| customer_city account_number| customer name | balance
Somebody Mirpur Road Dhaka A-101 Anybody 1000
Somebody Aga Kha Roac Bogra A-102 Anybody 1500
Anybody XYZ Road Khagrachhor A-103 Somebody 2000
Nobody Mirpur Road Dhaka A-104 Nobody 2500
customer account

Q1. From the customer table, find out the information of all the customes who live in Dhaka.

sel ect f romcustomer wher e customer_city 'Dhaka'’

Output:

customer_name

customer_street customer_city

Somebody

Mirpur Road

Dhaka

Nobody

Mirpur Road

Dhaka

sel ect f romcustomer wher e customer_city '‘Dhaka’
Output:
customer _name| customer_street customer_city
Somebody Mirpur Road Dhaka
Somebody Aga Kha Road Bogra
Nobody Mirpur Road Dhaka

18

or customer_city

Q2. From the customer table, find out the information of all the customes who live in either
Dhaka or Bogra.
‘Bogra’

Q3. Find out the customers along with their accounhumbers who have account balances of at
least 2000 taka.

sel ect customer_name, account_number fromaccount wher e balance 2000;
Output:
customer_name account_number
Somebody A-103
Nobody A-104

From the above three queries, we can observe tiera@estructure for theelect statement:

SELECT attribute 1, attribute 2,.., attribute N
FROM t abl e
WHERE expr essi on

* The attributes after theSELECT phrase are those attributes which we want to ayspk the
output result.

If an asterisk () is placed after the select phrase instead abaté names, it would mean that
we want all the attributes at the output.

* Thetable nameafter theFrROM clause refers to the relation from which we wanpérform the
query.

* Theexpressionsfter thewHERE clause contains the actual query. The expressi@yscontain
the following operators:

Comparison operators: , <=, >, >=, =,
Logical connectives: AND, OR, NOT

Simplified operators: t hi s BETWEEN some_val ue AND sone_ot her _val ue,
this NOT BETWEEN sone_val ue ANDsone_ot her _val ue

[These are the substitutes for:
this sone_val ue AND this some_ot her _val ue]

Q4. From the following table namedresult, find out the students (along with their marks) wlo
have scored more than 80 marks, and display them ithe descending order of their marks.

student_name| marks
A 55
B 90
C 40
D 80
E 85
F 95
G 82
sel ect student_name, marks f r omresult wher e marks 80 order by marks desc;
Or, as the table contains only these two fieldscarewrite:
sel ect f r omresult wher e marks 80 order by marks desc;
Output:
student name| marks
F 95
B 90
E 85
G 82

19

Q5. From the above table in Q4, we want to find outhe top-most 3 students (to give them prizes
for obtaining the 1%, 2" and 3¢ places). How would you find them?

sel ect student name fromresult order by marks desc limt 3;
Output:

student_name
F
B
E

Q6. From the table in Q4, we want to find out thetsident who stood 94, How would you find him?
sel ect student_name fromresult order by marks desc limt 1, 1;

Output:

student_name
B

Q7. From the table in Q4, we want to find outhow many students scored >= 80. How would you
find it?

sel ect count f r omresult wher e marks 80;

Output:

count(*)
5

Q8. We want to know how the results of the studentén Q4) would look like if we were to give
away 5 marks as grace. How would you find it?

Sel ect student_name marks 5 fromresult;

Output:

student_name| marks + 5
60
95
45
85
90
100
87

QMmOO|m| >

From the queries Q4 to Q8, we can observe the gestencture for theelect statement:

SELECT attribute(s) and/or function(s)
FROM t abl e

VHERE expr essi on
ORDER BY attribute(s)

LIMT nunber_of _rows / starting_row_ index, nunber_of rows

20

Relational Algebra

We’'ve seen various query statements for retrieinfymation according to our needs. But did youreve
wonder how these queries are executed by the cempirut in other words, how does the computer
interpret these queries? To get the answer, we ttage back into 1970; we need to know the histfry
how the DBMS was born.

History omitted for lack of time.®

Fundamental Relational Algebra Operations

These operations are called fundamental as theyw#feient for expressing any relational algebra
guery, although some common queries become lengtbypress.

Selection (unary)
Projection (unary)
Rename (unary)

Union (unary)
Set-difference (binary)
Cartesian product (binary)

ok wNE

The Selection Operation

Q9. From the customer table in Q1, find out the information of all the aistomers who live in
Dhaka.

SQL: select f romcustomer wher e customer_city 'Dhaka’ ;
RA: 6 customer_city "Dhaka” (CUStOMET)
So, the general structure for the select operationlational algebra is:

G expression (Telation)

The Projection Operation

Q10. From thecustomer table in Q1, find out the names and street address of all the customers.
SQL: sel ect customer_name customer_street f r omcustomer
RA: II customer_nameustomer_ciy{CUStOmMer)
So, the general structure for the projection opamadf relational algebra is:
IT attributes (relation)

Composition of the Relational Operations

Q11. From the customer table in Q1, find out the names of all the custorme who live in either
Dhaka or Bogra.

SQL: sel ect customer_name
f r omcustomer
wher e customer_city '‘Dhaka’ or customer_city '‘Bogra’

RA: II customer_name(o' customer_city- "Dhaka"V customer_city- "Bogra" (CUStomer))

21

The Union Operation

Q12. From the tables below, find the names of alhe customers who have either an account or a
loan or both.

customer name Ioan_number customer name account_number
Somebody L-101 Anybody A-102
Somebody L-102 Somebody A-103
Anybody L-103 Nobody A-104
borrower depositor
SQL: E(ra]: Eﬁt customer_name fr omborrower borrower depositor
sel ect customer_name fromdepositor;
RA H Customer_nam&borrower)u H Customer_nam&depositor)
customers
Output:
customer_name
Somebody
Anybody
Nobody

The Set-Difference Operation

Q13. From the tables in Q12, find all the customerssho have accounts
but no loans.

depositor borrower
SQL: sel ect customer_name fromdepositor

m nus (Orexcept)
sel ect customer_name fromborrower;

RA: 1T customer_namédepositor)-II customer naméOrrower) customers

Output:

customer_name
Nobody

Notes on theunion and set-difference operations:

» Unlike theSELECT clause, th&N oN, M NUS and EXCEPT clauses will eliminate duplicate values.
» For a union operation U r, or a set-difference operation— r, to be valid, two conditions must

hold:

1. The relation y and p must be of the same arity; i.e., they must haeestéime number of
attributes.

2. For alli, the domains oi-th attribute of r and the domains afth attribute of ¥ must be the
same.

Note that and g can be, in general, temporary relations that laeerésult of relational algebra
expressions.

» MySQL does not support thet NUS or EXCEPT clauses. Rather, set-difference is performed via
outer join operations. We'll learn about outer jojperation later.

22

The Cartesian-Product Operation

Q14. From the tables below, find all the customerwho have a loan at Dhaka branch.

loan_number | branch name | amount customer _name| loan_number
L-101 Dhaka 1000 Somebody L-101
L-103 Khulna 2000 Nobody L-103
Anybody L-103
loan borrower

The problem iscustomer_namés in one table, wheredganch_names in another table. Then how
would we perform aelect operation? Well, the good news is, we haveldb@ numbein common. So,
we can solve the problem by the following algorithfor eachloan_numberin loan table where

branch_nameés Dhaka, find out theustomer_nameorresponding to th&man_number
Step 1:Find theloan_numbes fromloan table wherdranch_names Dhaka.
f r omloan '‘Dhaka’

SQL: sel ect loan_number wher e branch_name

RA: II jpan_numbed© branch_name "Dhaka" (l0@N))

Step 2: Find the customer_nange from borrower table whereloan_numbes are equal to the
loan_numbes derived from step 1.

f r omborrower
any |l oan_nunber _in_the relation_ found fromstep 1;

SQL: sel ect customer_name
wher e loan_number

RA: II customer_name(ﬁ loan_number anyﬁloaninumberﬁinftheirelationjoundffromfstegpprrower))

But the problem is, how can we express | oan nunber in_the relation found fromstep 17?
The problem arises as that expressiaom $&t ofvalues, not ainglevalue that we can compare with another
value.

The solution comes with th€artesian-product(also known asross-produdt operation. From set
theory, we know that,

if A ={1, 2,x}
and B = {x, b}
then Ax B ={(1,x), (1,b), (2,X), (2,b), (X, X), (& b)}

If our requirement is to get the common value [iis tasex), then we can cross-product the sets and
find our required value by checking where both afta pair are the same (in this cagex)).

Similarly, if we cross-product the above two redas, we will get the following relation:

loan number | branch name| amount| customer nameloan number
L-101 Dhaka 1000 Somebody L-101
L-101 Dhaka 1000 Nobody L-103
L-101 Dhaka 1000 Anybody L-103
L-103 Khulna 2000 Somebody L-101
L-103 Khulna 2000 Nobody L-103
L-103 Khulna 2000 Anybody L-103
The above relation can be obtained by the follovgjagry or relational algebra expression:
SQL: select fromloan . borrower;
RA: ¢ (loanx borrower)

Now, let’s filter-out the rows where both tlean_numbes are the same. Then we’ll get the following
relation:

loan number | branch name| amount| customer nameloan number
L-101 Dhaka 1000 Somebody L-101
L-103 Khulna 2000 Anybody L-103

23

The above filtration (along with the cross-producgn be done by the following query or RA
expression:

SQL: select fromloan , borrower wher e loan_number loan_number;
RA: G loan_number Ioan_number(loan>< borrower)

But the DBMS system will complain if we try to exege the above query. How is the program supposed
to know that these twlman_numbes are to be checked for equality from both thessaled not from only
the left side or only the right side?

That's why we need to specify the attribute nantesgawith their table names:

SQL: sel ect fromloan , borrower
wher e loan . loan_number borrower . loan_number;

RA: 6 0an.loan_number borrowerloan_numbe{l0@N% borrower)

Fine. Now, to get our desired result, we need lterfiout the records which contain ‘Dhaka’ as the
branch_nameThen we’ll get the following relation:

loan number | branch name| amount| customer nameloan number
L-101 Dhaka 1000 Somebody L-101

The above filtration (along with the cross-prodacid the previous filtration) can be done by the
following query or RA expression:

SQL: select fromloan . borrower
wher e loan . loan_number borrower . loan_number and branch_name 'Dhaka’ ;

RA: G branch_name "Dhaka" (6 loan.loan_number borrowerloan_number(lO@N % borrower))
Finally, we only need theustomer_nang So, the final query for performing all thesgpsterould be:

SQL: sel ect customer_name fromloan . borrower
wher e loan . loan_number borrower loan_number and branch_name '‘Dhaka’

RA: II customer_name(ﬁ branch_name "Dhaka" (6 loan.loan_number borrowerloan_number(Ioan x bOfI’OWGI’)))

And the final output would be:

customer_name
Somebody

The Rename Operation
Let's go through an example.

Q15. From the table named-esult below, find the highest marks.

student_name| marks
A 60
B 70
C 80

SQL: select max(marks) fromresult
But how would you express this in relational algébSolution:
Step 1:Compute the Cartesian-product relation:

student_name| marks | student name| marks
A 60 A 60
A 60 B 70
A 60 C 80
B 70 A 60

24

B 70 B 70
B 70 C 80
C 80 A 60
C 80 B 70
C 80 C 80

RA: o (result x result)

Step 2:Filter out the tuples in which the marks on tHe dede ardesserthan the marks on the right side
(or vice-versa):

student_name| marks | student_name| marks
A 60 B 70
A 60 C 80
B 70 C 80

RA G marks marks(resultx result)

Now the problem is obvious. How can we distinguisé twomarks Using the relation name
(i.e., result.marks = result.marks) can’t remove @éimbiguity. In this case, we have to renaneor both
the relations. It can be done as below (renamirg @me of the relations intes):

RA: 6 resultmarks- resmarks(resultx p s (resuld)
SQL: select f r omresult result as res wher e result marks < res . marks;
The general structure of the rename operation fsliasvs:
Pnew-name (0ld-name)
Step 3:Take only thenmarksfield:

marks
60
70
RA: IT result.marks(G result.marks: resmarks(f€SUltx p res (result)))
SQL: select distinct result.marks f r omresult result as res

wher e result marks < res . marks;

Note that we're using the keywomdSTINCT to get unique values. RA automatically providestidct
values, whereas SQielect query doesn't.

Step 4:Take the set-difference between the marks atgilsutesult relation and this temporary relation:
RA: I marks(reSU|t)_H marks (G resultmarks resmarks(reSUItx P res (I'ESUH)))
SQL: select marks fromresult
m nus

sel ect distinct result.marks f r omresult result as res
wher e result marks res . marks) ;

Additional Relational Algebra Operations
These operations do not add any power to the agébt they simplify common queries.

1. Set-intersection (binary)
2. Natural join (binary)

3. Division (binary)

4. Assignment (unary)

25

The Set-intersection Operation r r2
Note:rnNr=n—-(M-K) =rKL—(h—n) .
Q16. From the table in Q12, find all the customersvho have both an account and

a loan.

RA: I customer_namébOrrower)N customer namédepositor)

SQL: select customer_name fromborrower
i ntersect
sel ect customer_name fromdepositor;

Note that MySQL doesn’t support theTERSECT operation. So, the following query is used instead

SQL: select distinct borrower .customer_name fromborrower depositor

wher e borrower . customer_name = depositor customer_name;
OR, sel ect distinct customer_name fromborrower

wher e customer_name in (select customer_name fromdepositor
OR, sel ect distinct borrower .customer name fromborrower

where exists
sel ect * fromdepositor

wher e borrower . customer_name = depositor customer_name) ;
RA: IT borrower.customer_namkD borrowercustomer_name depositor.customer_nark@Orrowerx depositor))
Output:
customer _name
Somebody
Anybody

The Natural Join Operation

This operation simplifies the Cartesian-productrapen in that it automatically applies the conafits
that common fields are to be matched. Also, thernomfields are displayed as a single field at outpu

Thus, the operation

IT porrower.customer_namkD borrowercustomer_name depositor.customer_nark@Orrowerx depositor))

becomes

IT borrower.customer_namdOrrowenx depositor)

Q17. From the table in Q12, find the customers (atay with all their information) who have both
an account and a loan.

SQL: select fromborrower natural join depositor

RA: o (borrowerX depositor)

Output:
customer _name| loan_number | account_number
Somebody L-101 A-103
Somebody L-102 A-103
Anybody L-103 A-102

26

Extended Relational Algebra Operations
These operations simply extend the basic operatiossveral ways.

1. Outer join — allows relational algebra expressions to dedh wull values by extending join
operation

2. Generalized Projection— allows arithmetic operations as part of profacti
3. Aggregate Functions- sum, avg, count, min, max

The Outer Join Operation

Consider the following two tables:

id | name id | name
1 A 1 A
2 B 2 C

X y
Both the tables have a commoame— A. However, table x hasrseame(B) which tabley doesn’'t have.
On the other hand, tabjehas aname(C) that tablex doesn’t have.

If we cross-join the tables, we’ll get:

id | name | id | name
1 A 1 A
1 A 2 C
2 B 1 A
2 B 2 C

Now, if we use natural join, we’ll come up with grthe first row. But what if we want to keep alkth
records from the left table or right table or bathyway? For example, we want to know which recamds
tablex doesn’t match with records in tahfe

Outer join answers to this query. There are thyped of outer joins:
Left Outer Join

Keeps all the records from the left table and asssiqull values to those records which do not matth
the right table.

id | name| id | name
1 A 1 A
2 B null | null

Right Outer Join

Keeps all the records from the right table andgassnull values to those records which do not matcth
the left table.

id | name| id | name
1 A 1 A
null | null | 2 C

Full Outer Join

Keeps all the records from the both the tables asgigns null values to those records which do not
match.

id |name| id |name
1 A 1 A
2 B null | null

null | null 2 C

27

Q18. From the tables in Q12, find all the customerssho have accounts

but no loans.

depositor
SQL: sel ect customer_name
f r omdepositor | eft outer join borrower
on depositor customer_name borrower customer_name
wher e loan_number i s null

borrower

customers

OR, sel ect customer_name
f r omdepositor | eft outer join borrower
usi ng (customer_name
wher e loan_number i s null

RA: I customer_namé0 loan_number nuil (depositor_X borrower))

Output:

customer_name
Nobody

Q19. From the table in Q12, find the names of allhe customers who have either an account or a

loan but not both.

depositor
SQL: sel ect customer_name P

f r omdepositor full outer join borrower
on depositor customer_name borrower customer_name
wher e loan_number i s null or account_number is null

borrower

customers

OR, sel ect customer_name
f r omdepositor full outer joinborrower
usi ng (customer_name
wher e loan_number i s null or account_number is null

OR, sel ect customer_name
f r omdepositor natural full outer join borrower
wher e loan_number is null or account_number is null

RA: II customer_name(o' loan_number- null V account_number null (deFJOSitOCDC borrower))

Output:

customer_name
Somebody
Anybody
Nobody

Generalized Projection

This operation extends the projection operationabgwing arithmetic functions to be used in the

projection list.

As an example, let’s revisit query Q8: we want tm how the results of the students (in Q4) would

look like if we were to give away 5 marks as gradew would we find it?
SQL: sel ect student_name ., marks 5 fromresult

RA: I swdent_namenarks: 5 (result)

Aggregate Functions
Aggregate functions take a collection of values @tdrn a single value as a result.
For example, consider the followirgnployedable:

28

employee name branch name| branch_city | salary
A DU Dhaka 1000
B DU Dhaka 2000
C BUET Dhaka 3000
D KUET Khulna 4000
E KU Khulna 5000
F RU Rajshahi 6000

Q20. Find the number of branches appearing in themployee relation.

SQL: select count(distinct branch_name) fromemployee;
RA: 9‘ count-distinct branch_name(employee)

Output:

count(distinct branch_name)
5

Q21. Find the total salary of all employees atach branch of the bank.

SQL: sel ect branch_name , sun salary from employee group by branch_name;

RA: branch_namg sum(salary (employee)

Output:
branch _name| sum(salary)
BUET 3000
DU 3000
KU 5000
KUET 4000
RU 6000

Note that the column header for the second colusnnot very meaningful. To give it a meaningful
name, e.gtotal_salary we can rewrite the above query as below:

SQL: select branch_name , sun salary as total_salary from employee group by branch_name;
RA: branch_namg sum(salary astotal_salar)(em |0|0yee)

Output:

branch_name| total_salary

BUET 3000

DU 3000

KU 5000

KUET 4000

RU 6000

Q22. Find branch city, branch name wise total salgr, average salary and also number of
employees.

SQL: sel ect branch_city, branch_name sun salary avg(salary count (employee_name
from employee group by branch_city, branch_name;

RA: branch_city branch_namg sum(salary, avg(salary, count(salary (em ployee)

Output:

branch_city | branch_name| sum(salary) | avg(salary) | count(employee name
Dhaka BUET 3000 3000.0000 1

Dhaka DU 3000 1500.0000 2

Khulna KU 5000 5000.000(1

29

Khulna KUET 4000 4000.0000 1
Rajshahi RU 6000 6000.0000 1

Q23. From the following table, find the average bance for each customer who lives in Dhaka and
has at least two accounts.

customer_name| customer_city customer_name| account_no| balance
A Dhaka A A-101 1000

B Dhaka A A-102 2000

C Khulna B A-103 3000

D Dhaka C A-104 4000

D A-105 5000

D A-106 6000

customer account

Here, we cannot insert both the conditions intoathe e clause, because counting how many accounts a
customer has can only be done using an aggregatéidn (ount). As aggregate functions operate on
groups whereas thehere clause operates on tuples, these two conditionsotabe put together. For

solving this problem, SQL introduces another clause ng where the conditions to be operated on groups
are to be placed.

So how would we write this query?
Step 1:Find the customers (with all the other informajiano live in Dhaka.
SQL: select fromcustomer natural joinaccount where customer_city '‘Dhaka’ ;

This would yield the following relation:

customer _name| customer_city | account_no| balance
A Dhaka A-101 1000
A Dhaka A-102 2000
B Dhaka A-103 3000
D Dhaka A-105 5000
D Dhaka A-106 6000

Step 2: Because we need to find average balancedohcustomer, we need to group the records by
customer_name; but remember that we have to tdigdlmyse customers who have at least two accounts.
SQL: select fromcustomer natural joinaccount
wher e customer_city 'Dhaka’

group by customer_name
havi ng count (di stinct account_no 2;

This would yield the following relation:

customer _name| customer_city | account_no| balance
A Dhaka A-101 1000
D Dhaka A-105 5000

Step 3:However, we need to find tlaerage balancéor each customer.

SQL: select customer_name , avg(balance
fromcustomer natural joinaccount
wher e customer_city '‘Dhaka’
group by customer_name
havi ng count (di stinct account_no 2;

Thus, the final output will be:

customer _name| avg(balance)
A 1500.0000
D 5500.0000

30

Modification of Database

It addresses how to add, remove or change infoomat the database. Database modification is
expressed by assignment operatien,

Insertion

Inserting records in a database is quite easy. Wierespecify a tuple to be inserted or write argue
whose result is a set of tuples to be inserteds{denthe following two tables:

customer | loan_no| branch | amount customer | account_no| branch | balance
A 101 Dhaka 1000
B 102 Rajshah] 2000
C 103 Dhaka 3000
loan account

Now, let’s insert a record in thean table:
SQL: insert into loan values ('D', 104, 'Bogra’ , 4000);
RA: loan< loanU {("D", 104, "Bogra", 4000)}

Easy, isn't it? Let’'s try another example (a bitngex, however). We want to provide a new savings
account of Tk. 200 for all the loan holders of Daddtanch. The query would be as follows:

SQL: insert into account
sel ect customer , loan_no , branch , 200 fromloan where branch = 'Dhaka';

RA: account— accountJ (IT cystomer, loan_no, branctoo (G branch- "Dhaka"(l0@n)))

Note that we're directly projecting 200 to forcéfuset the value of balance as 200.

Therefore, we’'ve seen that to insert data to dioelawe either specify a tuple to be inserted otera
guery whose result is a set of tuples to be indeHewever, two conditions must be met:

1. The attribute values for inserted tuples must bmbess of the attribute’s domain.
2. Tuples inserted must be of the same arity.

Deletion

Deletion removes the selected tuple/tuples fromdidiabase. Only the whole tuples can be deletead, no
values of particular attributes.

The SQL syntax for deletion is fairly simple:

del ete fromtabl e where expression

So how does the delete operation work? Let’s disctdwough an example. Consider the following table
namedempl oyee:

employee _name branch_name| branch_city | salary
A DU Dhaka 1000
B RU Rajshahi 2000
C BUET Dhaka 3000

Suppose we want to delete the employee ndtétihat thedelete statement does is, it first selects the
rows which we want to delete:

G employee_name "B" (employee)
So, thesecondrow from the table would be selected.

Now, we’ll try to get a relation where this selett®w doesn't exist. How? Very simple. Just use set
difference:

employee -6 employee_name "8* (EMployee)

31

The above set-difference operation will producefttlewing relation:

employee name branch _name| branch_city | salary
A DU Dhaka 1000
C BUET Dhaka 3000

Now, we can just replace the original employeedatith this new table using the assignment operatio
employee— employee -6 empioyee_name "8* (€EMployee)
Voila, it's done!

Update

Update is used to change or modify values of onemare attributes of a tuple/tuples. The SQL syntax
for updating is:
update table

set attribute 1 = value_1,
wher e expression

attribute n = value_n

So how does the update operation work? Consideallge table again. Suppose we want to change
employeB’s city from Rajshahito Comilla. To do this, we’ll first use projection to projebte attributes of
that row. But instead of projectinfgranch_city we’ll directly project ‘Comilla’. This will forcibly place
“Comilla” as the attribute’s value. The projectisras follows:

II employee_name, branch_nart@omilla” , salary(employee)
We'll get a relation containing the following tuple

employee name branch _name| branch_city | salary
B RU Comilla 2000

Now, we’ll delete the row to be updated (i.e., tbe containingemployee _namB) from the original
table:

employee— employee -6 empioyee_name 'z* (€EMployee)
The original table should look like the following:

employee name branch _name| branch_city | salary
A DU Dhaka 1000
C BUET Dhaka 3000

Now, let’'s add our previously projected recordhis inew table using union operation:

employee— employedJ (IT empioyee_name, branch_nartepmilla", salary(€Mployee))

Thus, in the finalemployeetable, the attribute will be updated. Thereforee steps for updating the
above attribute can be expressed as follows:

t<1II employee_name, branch_narfiepmilla”, salary(em p|0yee)
employee— employee -6 empioyee_name '&* (€Mployee)

employee— employedJ (t)

32

Indexing and Hashing

The Problem

Many queries reference only a small fraction ofords in a file. For example, “find all accounts at
Mirpur branch” only returns records froaccountfile wherebranch_name= “Mirpur”. It is inefficient for
the system to read every record and to checkittiech_namdield for the name “Mirpur”.

We should be able to locate these records diretdyallow these forms of access, we design addition
structures associated with files. These additistraktures are called indices.

Basic Concepts

An index for a file in a database system works utmthe same way as the index in this textbookelf
want to learn about a particular topic (specifigcalword or a phrase) in this textbook, we cancdetor the
topic in the index at the back of the book, find flages where it occurs, and then read the padieslttine
information we are looking for. The words in thel@x are in sorted order, making it easy to findwoed
we are looking for.

Card catalogs in libraries works in a similar manA® find a book by a particular author, we would
search in the author catalog, and a card in thalagpttells us where to find the book. To assistirus
searching the catalog, the library would keep #rel€ in alphabetic order by authors, with one éare@ach
author of each book.

Database system indices play the same role asibdimes or card catalogs in libraries. For examiae,
retrieve an account record given the account nuntberdatabase system would look up an index tbdim
which disk block the corresponding record residesl then fetch the disk block, to get the accoecdnd.

Keeping a sorted list of account numbers wouldwatk well on very large databases with millions of
accounts, since the index would itself be very Big. more sophisticated indexing techniques maysbed.

Types of Indices

There are two basic kinds of indices.

1. Ordered indices:indices are based on a sorted ordering of theegalu

2. Hash indices:indices are based on the values being distribugidrmly across a range of buckets.
The bucket to which a value is assigned is detexchby a function, calledfash function

Index Technique Choosing Factors

There are several techniques for both ordered indeand hashing. No one technique is the best. Each
technique is best suited to particular databasécapipns.Each technique must be evaluated on the basis of
these factors:

Access types- Finding records with specified valuer arange of values

Access time- Time to find garticular data itemor aset of items

Insertion time — Time to find the correct place to insert thenite time to update the index.
Deletion time— Time to find the item to be deleted + time taaie the index.

Space overhead- The additional space occupied by an index siract

V abwnpE

We may have more than one index or hash functioa fde. (The library may have card catalogues
by author, subject or title)

» An attribute or set of attributes used to look epards in a file is called thgearch key (This
definition of key differs from that used in sup@&yk candidate key or primary key).

33

Ordered Indices

An ordered index stores the values of the seargh kesortedorder and associates with each search key
the records that contain it.

Primary / Clustering Index

If the file containing the records is sequentialtgieyed, gorimary index is an index whose search key
also defines the sequential order of the file.

The search key of a primary index is usually thenpry key, but it is not necessarily so.

Branch_namg Pointer Account_no | Branch_namg Balance
Adabor A-9 Adabor 300
C.O. — A-1 Adabor 500
Dhanmondi | *As5 C. O. Bazar 560
Mirpur Az Dhanmodi 590
Motijheel A-3 Dhanmodi 420
Index file A-2 Mirpur 600
! A4 Mirpur 520
A-10 Mirpur 120
A-6 Motijheel 600
A-7 Motijheel 200

Account file

Figure: A primary index. The Account file is ordered aatiog toBranch_naméwhich isnota
primary key). The index file is also ordered adiog toBranch_name

Secondary / Non-Clustering Index

Indices whose search key specifies an order diffédrem the sequential order of the file are called
secondary indices

Account_no Pointer Account_no | Branch_nameg Balance
A-1 — A-9 Adabor 300
A-2 — A-1 Adabor 500
A-3 — A-5 C. O. Bazar 560
A-4 — A-8 Dhanmodi 590
A-5 —1 A-3 Dhanmodi 420
A-6 — A-2 Mirpur 600
A-7 — A-4 Mirpur 520
A-8] A-10 Mirpur 120
A-9 — A-6 Motijheel 600
A-10 — A-7 Moatijheel 200
Index file Account file

Figure: A secondary index. The Account file is orderedoadmg to Branch_nameBut te
index file is ordered according &zcount_no

Index-Sequential Files

Files that are ordered sequentially on some sdagland have a primary index on that search key are
calledindex-sequential files

Contents of an index record / entry

An index record or index entry consists of a search-key value and pointers taoomeore records with
that value as their search key value. The poimter tecord consists of the identifier of a diskckBland an
offset within the disk block to identify the recondthin the block.

Types of ordered indices

There are two types of ordered indices:

34

1. Dense Index
2. Sparse Index
Dense Index

Dense indexs the index where an index record appeargverysearch-key value in the file.

Dense index for primary indices

In a dense primary index, the index record cont#iessearch-key value and a pointer to the firsa da
record with that search-key value. The rest ofrdeords with the same search key-value would bedto
sequentially after the first record, since, becahseindex is a primary one, records are sortethersame
search key.

Branch_name Pointer Account_no | Branch_nameg Balance
Adabor > A-9 Adabor 300
C.O. — A-1 Adabor 500
Dhanmondi —_ 1 *As5 C. O. Bazar 560
Mirpur A3 Dhanmodi 590
Motijheel A-3 Dhanmodi 420
Index file A-2 Mirpur 600
A-4 Mirpur 520
A-10 Mirpur 120
A-6 Moatijheel 600
A-7 Moatijheel 200

Account file

Figure: Dense index for a primary index.

Another implementation of dense indices

A dense index can also be implemented by storiligt af pointers to all records with the same skarc
key value Doing so is not essential for primary indices.

o~ A-101 | Downtown | 500 —-P
350 _/—> A-217 | Brighton 750 —P
A-110 | Downtown | 600 | <o
400|
500 _)/__) A-215 | Mianus 700 _-‘P
600 | A-102 | Perryridge | 400 _:;
0] — /—r A-201 | Perryridge | 900 |
750] 7 A-218 | Perryrid 00| 1<
: £ = 10
2 e A-222 | Redwood | 700 S
A-305 | Round Hill | 350 | _|
=] oun 1) __|-_
Figure: Another implementation of dense index.
Sparse Index Brighton —1— | A-217 | Brighton 750 N
. . . Mianus A-101 | Downtown 500 B
~ Sparce index is the index where arf Reqwood \ A-110 | Downtown | 600 i
index record appears for ongomeof the A215 | Mianus 700 i
search-key values in the file. A-102 | Perryridge | 400]

A-201 | Perryridge 900 |
A-218 | Perryridge 700 =l
A-222 | Redwood 700 i
A-305 | Round Hill 350 _

Figure: Sparse index.

As is true in dense indices, each ind
record contains a search-key value anc
pointer to the first data record with ths
search-key value.

JUU\J\JU\J\JU

To locate a record, we find the index
entry with the largest search-key value that is b&n or equal to the search-key value for whiehane
looking. We start at the record pointed to by thdex entry, and follow the pointers in the filetibwve find
the desired record.

35

Comparative Analysis of Dense and Sparse Index

It is generally faster to locate a record if we dnavdense index rather than a sparse index. However
sparse indices have advantages over dense indicd®t they require less space and they impose less
maintenance overhead for insertions and deletions.

A good trade-off

There is a trade-off that the system designer mmte betweeraccess timeand space overhead
Although the decision regarding this trade-off deggeon the specific applicatioa,good compromise is to
have a sparse index with one index entry per block

Why this trade-off is good

The dominant cost in processing a database recgiést time that it takes to bring a block fromkdis
into main memory. Once we have brought in the hltiok time to scan the entire block is negligible.

Using this sparse index, we locate the block camgithe record that we are seeking. Thus, unless t
record is on an overflow block, we minimize bloadcasses while keeping the size of the index (and, th
our space overhead) as small as possible.

Multi-Level Indices

The problem with single-level indices

Even if we use a sparse index, the index itself magome too large for efficient processing. It & n
unreasonable, in practice, to have a file with @00,records, with 10 records stored in each bltfcke
have one index record per block, the index has0D0r8cords. Index records are smaller than dataradsc
so let us assume that 100 index records fit oroekbIThus, our index occupies 100 blocgs, how can we
minimize disk access?

» If there are no overflow blocks in the index, wa ese binary search. If there &dlocks, this will
read as many atog,(B) | blocks (as many as 7 for our 100 blocks).

» If index has overflow blocks, then sequential seasdypically used, reading @l index blocks.
Thus, the process of searching a large index may&ity.

Solution to this problem -
index data

We treat the index just as we would treat a M\ block0 block 0
other sequential file, and construct a sparse ime)
the primary index, as in the figure beside.

To locate a record, we first use binary search
the outer index to find the record for the large index data
search-key value less than or equal to the onentba : block 1 block 1
desire. The pointer points to a block of the inr ™€ ndex
index. We scan this block until we find the reco
that has the largest search-key value less thar
equal to the one that we desire. The pointer ia 1
record points to the block of the file that congathe
record for which we are looking.

inner index

Using two levels of indexing, it is required t
read only one block rather than seven with bin:
search, if we assume that the outer index is ajread
main memory.

For very large files, additional levels of indexir
may be required.

. Figure: Two level sparse index.
Indices must be updated at all levels when g P

insertions or deletion operations are performed.
36

Secondary Indices

A secondary index on a candidate key look just Bkdense primary index, except that the records
pointed to by successive values in the index atsobed sequentially.

If the search key of a secondary index is not alicite key, it is not enough to point to just thetf
record with each search-key value because the namgaiecords with the same search-key value coeld b
anywhere in the file. Therefore, a secondary inmest contain pointers to all the records.

We can use an extra-level of indirection to implatngecondary indices on search keys that are not
candidate keys. A pointer does not point direailyhie file but to a bucket that contains pointerthe file.

A | Pointer

A-l _— A |B| C

A-2 — l

A-3 — A-4 | a| 100

A4 | —

A-5 — A-1| b | 200

Index fileon A

A-5 | a| 300

B | Pointer
e —— A-2 | d | 400
b| —— A3 | c| 500
C JE—
d| — Relation file

Index fileon B

Figure: Secondary indices on candidate kegnd non-candidate k3

Secondary indices must be denwith an index entry for every search-key valug] a pointer to every
record in the file.

Secondary indices improve the performance of qaatethat use keys other than the search key of the
primary index. However, they impose a significanerdead on database modification.

The designer of the database decides which segpmdiices are desirable on the basis of an estiofate
the relative frequency of queries and modifications

B' Tree Index

The Problem with Indexed-Sequential File Organization

The main disadvantage of the index-sequential fi@mization is that performance degrades as the file
grows, both for index lookups and for sequentianscthrough the data. Although this degradationbzan
remedied by reorganization of the file, frequentgaaizations are undesirable.

How B* Tree Index Solves the Problem

B tree index structure maintains its efficiency desfrequent insertions and deletions. It autonagic
reorganizes itself with small local changes, in filage of insertions and deletions. It imposes parémce
overhead on insertion and deletion. Again, sincdesomay be as much as half empty (if they have the
minimum number of children), it adds space overh@ddse overheads are acceptable even for freguentl
modified files, since the cost of reorganizatioavsided.

Structure of a B' Tree

A B tree index is a multilevel index but is structuifferently from that of multi-level indexed-
sequential files. It is a balanced tree in whickrg\path from the root to a leaf is of the samgtlen

A typical node contains up to— 1 search key valud§;, Ko, ..., K, .1, andn pointersPy, Py, ..., Pp.
Search key values in a node are kept in sorted diues, ifi <j, thenK; <K, i.e.,K; <Ky < ... <Kp_1.

37

Py K1 P, Pn.1 Kn-1 P

Figure: Typical node of a Btree.
Leaf nodes

» All the pointersP; (i = 1 ton — 1) in the leaf node points to either a file mrekcavith search key value
Ki, or a bucket of pointers, each of which pointa fde record with that search key value.

Bucket structure is used only if search key isagrimary key, and file is not sorted in search key
order.

> PointerP, (N pointer in the leaf node) is used to chain leafemtogether in linear order (search key
order). This allows efficient sequential processfhe file.

» Each leaf has betweefn — 1) / 2 andn — 1 valuesThe ranges of values in each leaf do not overlap.
> If the B'-tree index is to be a dense index, every searglviiee must appear in some leaf node.
Non-leaf nodes

» Non-leaf nodes form a multilevel sparse index af ledes. The structure of the non-leaf nodes is
same as that of leaf nodes, except that all parates pointing to tree nodes.

» Each non-leaf node in the tree has betweeh2| andn pointers wheren is fixed for a particular
tree. The number of pointers in a node is calledftreout of the node.

Root node

Unlike other nonleaf node#)e root node can hold fewer thian/ 2| pointers however, it must hold at
least two pointers, unless the tree consists of oné node.

[emial] 1)
I}

‘ ; ‘ Mianus

Y
Perryridge‘ ‘ H—P‘ ‘Redwood

A-212 | Brighton 750
A-101 | Downtown | 500

‘ ‘ ‘ l ‘Red wood

v [T T

Brighton lDownzown

Round Hi]1| |

vy

A-110 | Downtown | 600

account file

Figure: B+ tree structure witih = 3. Note that no bucket structure is used a
search-key is a primary key and the file is sometthe search-key order.

Operations on a B* Tree

The figure beside shows a’Bree. As the [z2s][[50[]75[1 T]
example illustrates, this tree does not havkilla
index page (we have room for one more key a
pointer in the root page). In addition, one of tt
data pages contains empty slots. |5 [tofas

20

[25[30] [[[50]55]60]65][75]80]8s5]90]

The key-value determines a record’s placementBi tiee. The leaf pages are maintained in sequential
order and a linked list (not shown) connects eael page with its sibling page(s). This linked Bpeeds
data movement as the pages grow and contract.

Adding Records to a B* Tree

We must consider three scenarios when we add adréca B+ tree. Each scenario causes a different
action in the insert algorithm. The scenarios are:

38

Leaf Page Full Index Page Full Action

NO YES/NO Place the record in sorted position in the appateiieaf page.
YES NO 1. Split the leaf page.
2. Place Middle Key in the index page in sorted order.
3. Left leaf page contains records with keys belowrthedle key.
4. Right leaf page contains records with keys equalrtgreater than

the middle key.

YES YES . Split the leaf page.
. Records with keys < middle key go to the left Ipafje.

. Records with keys >= middle key go to the right jgage.

. Keys < middle key go to the left index page.
. Keys > middle key go to the right index page.

1

2

3

4. Split the index page.

5

6

7. The middle key goes to the next (higher level) inde
If

the next level index page is full, continue #jptig the index pages.

Illustrations of the insert algorithm
Adding a record when the leaf pageisnot full
We’'re going to insert a record with a key value28finto the B tree. The following figure shows the

result of this addition.
/25 lEDJJiI\

[5 Jro[15]20] [25]28]30]]|50[55]60[65] [75

80[8s| 90|

Adding a record when the leaf page isfull but theindex pageisnot

Now, we’re going to insert another record with & kalue of 70 into our B+ tree. This record shogdd
in the leaf page containing 50, 55, 60, and 65.oduahately, this page is full. This means that westrsplit
the page as follows:

Left Leaf Page| Right Leaf Page
50 55 60 65 70

The middle key of 60 is placed in the index pagsvben 50 and 75.
The following table shows the'Bree after the addition of 70.
[25] [so][60[J75]

[5 [10[15]20][25]28[30]][50[55] [|[s0[65]70] | [75]80[85]s0]

Adding a record when both the leaf page and the index page are full

As our last example, we're going to add anotheondcontaining a key value of 95 to ouf Bee. This
record belongs in the page containing 75, 80, 88,9%9. Since this page is full we split it into tpages:

Left Leaf Page| Right Leaf Page
75 80 85 90 95

The middle key, 85, rises to the index page. Unfaately, the index page is also full, so we spié t
index page:

Left Index Page| Right Index Page| New Index Page
25 50 75 85 60

39

The following figure illustrates the addition oftihecord containing 95 to the B+ tree.

)I‘Sﬂli [T 1
o

[T25R 50011 11 Ii?SIiI-%I,I [1L_1

| 5 [10]15]20]|25]28]30] |[[50[55] [[[60]65]79]]

[EEEE

Deleting records from a B* Tree

We must consider three scenarios when we deletc@d from a B tree. Each scenario causes a
different action in the delete algorithm. The sc@®are:

Leaf Page Below Index Page Below

Fill Factor Fill Factor Action
NO NO Delete the record from the leaf page. Arrange kayascending
order to fill void. If the key of the deleted redoappears in the
index page, use the next key to replace it.
YES NO Combine the leaf page and its sibling. Change tidex page to
reflect the change.
YES YES 1. Combine the leaf page and its sibling.

2. Adjust the index page to reflect the change.
3. Combine the index page with its sibling.

Continue combining index pages until you reach gepaith the
correct fill factor or you reach the root page.

Illustrations of the delete algorithm
Deleting a record that leaves the leaf page below fill factor, but not the index page

We begin by deleting the record with key 70 frora Bi tree. This record is in a leaf page containing 60,
65 and 70. This page will contain 2 records afterdeletion. Since our fill factdis 50% or (2 records) we
simply delete 70 from the leaf node. The followf'rgyre shows the Btree after the deletion:

/Isﬂli []

W25 {50lL_[[[|.l75|1l85|| L1l

|5 [10[15[20][25]28]30] ||s0[55] [|[69[sS]

[75[80] [] [es[o0]es]]

® Fill factor: The minimum number of keys that catisein a node / page. Its valud is/ 2.
40

Deleting a record that |eaves none of the pages below fill factor

Next, we delete the record containing 25 from the tBee. This record is found in the leaf node
containing 25, 28, and 30. The fill factor will B&% after the deletion; however, 25 appears ininbex
page. Thus, when we delete 25 we must replaceht2 in the index page.

The following figure shows the Bree after this deletion:

Leod [T I1 Tl

250l [] [IJ75|1||85|i| L]

|5 [10]15|20]|28[30] [|[[so[ss| | [[69[65 [|

o

EECCREEEDEE

Deleting a record that leaves both of the pages below fill factor
As our last example, we're going to delete 60 frim@ B+ tree. This deletion is interesting for sever
reasons:

1. The leaf page containing 60 (60 65) will be beldw fill factor after the deletion. Thus, we must

combine leaf pages.
2. With recombined pages, the index page will be reduxy one key. Hence, it will also fall below the

fill factor. Thus, we must combine index pages.
3. 60 appears as the only key in the root index pageiously, it will be removed with the deletion.

The following figure shows the Bree after the deletion of 60. Notice that thes toentains a single

index page.
28] [50[]7 J*\\

[STrous[z0] [zaf30] |] [5o]s3[ea] | [7ee0]] [es[50[oe]

B* Tree File Organization

The performance of index-sequential file organmatdegrades as the file grows. With growth, an
increasing percentage of index records and acacards become out of order and are stored in overfl
blocks. We solve the degradation of index lookupusyng B tree indices on the file. We solve the
degradation problem of storing the actual recorglsising the leaf level of Btree to organize the blocks
containing the actual records.

> In a B tree file organization, the
leaf nodes of the tree stor Jell 111
records instead of storing

pointers to records. LLCLIELL T
» Since records are usually large
; : A [®8) €1 [D9) [EH [FH ED [G3) [#H3)
than pointers, the maX|mun| | L1 (= (TG g (G (E2T) H)
¥
number of records that can b C—{(L-ﬂ 1089 P& [wLe] [N [(Ps)]

stored in a leaf node is less the..

the maximum number of Figure: B* tree file organization.

41

pointers in a non-leaf node.
However, the leaf nodes are still required to bleadt half full.

Insertion and deletion from a’Bree file organization are handled in the same a@yhat in a B
tree index.

When a B tree is used for file organization, space utilaatis particularly important. We can
improve the space utilization by involving more ligsip nodes in redistribution during splits and
merges. This technique is callestation.

As an example, consider thé Bee before the addition of the record contairdrkgy of 70. As
previously stated, this record belongs in the femfe containing 50 55 60 65. Notice that this nede
full, but its left sibling is not:

25

[50l{75l] 1[I

|5 [10]15]20] [25

28[30] |[50]55]60]65]

75

80|es| 90|

Using rotation we shift the record with the low&sy to its sibling. Since this key appeared in
the index page we also modify the index page. Eve B tree appears in the following figure:

55[{75[]_[]

[25]

[5 [10]15]20] [25]28]30]50] [55]60]65] 70 [75]80]85] 90]

B-Tree Index

>

B-tree indices are almost similar td Bee indices, but B-tree eliminates the redundémtage of
search key values. In"Bree, some search key values appear twice. A suoreling B-tree allows
search key values to appear only once. Thus wetcaa the index in less space.

Search keys in non-leaf nodes appear nowhererekbe iB-tree; an additional pointer field for each
search key in a non-leaf node must be included.

For non-leaf node, pointeB; are the bucket or file record pointers.

| il”erryridgel] ‘ ‘
Il |

‘ ‘ Mianus | ‘ ‘ ‘ ‘ ‘Redwood
|

Y Y

‘ Brighton| [Downtown) *\-bH Mianus ‘ ‘ H—*{ Perryridge H—b‘ ‘Redwood Round Hi]1||
Figure: B tree (above) and the corresponding B-tree (below).
H ‘Dm\'mown ‘ ‘Redwood ‘
i il |
Downtown,/ Redwood
bucket bucket
¥

[Brighton | |Clearview ~‘—>‘ ‘ Mianus | |Perryridge II.I
i 'l i]
Brighton Clearview Mianus Perryridge Round Hill
bucket bucket bucket bucket bucket

42

Advantages of B-Tree

1. May use less tree nodes than a correspondirteeB.

2. Sometimes it is possible to find the desired vélem®re reaching a leaf node.
Disdvantages of B-Tree

1. Only a small fraction of desired values are fourtblte reaching a leaf node.

2. Fewer search-keys appear in non-leaf nodes; hént@ut is reduced. Thus, B-trees typically have
greater depth than a correspondirigi@e.

3. Insertion and deletion are more complicated tha®'itrees.

4. Implementation is harder thari Bees, since leaf and non-leaf nodes are of ifitesizes.

Typically, advantages of B-trees do not outweighdisadvantages.

Hashing

The Problem with Sequential File Organization and How Hashing Solves It

One disadvantage of sequential file organizatidhas we must access an index structure to locate da
or must use binary search, and that results in wOreperations. File organizations based on thkrteue
of hashing allow us to avoid accessing an indevctire. Hashing also provides a way of constructing
indices.

Hash File Organization

In a hash file organization, we obtain the address of the dis hash
block containing a desired record directly by cotmu a hash keys function buckets
functionon the search-key value of the record. g? —
A hash function h is a function from the set of all search-ke 2@ 7C 02 [a1z
valuesK to the set of all bucket addres&e®; = h(K;). T 03
The termbucket is used to denote a unit of storage that can s S 13
one or more records. A bucket is typically a diséck but may be T 14 2165
smaller or larger than a disk block. L

i i i . Figure: A typical phone book as a hash table.
Manipulation of Records in Hash Files

1. Insertion: To insert a record with search k&y, computeh(K;), which gives the address of the
bucket of the record — assuming there is spacthéorecord — and the record is inserted.

2. Lookup: To perform a lookup on a search key vakiewe computeh(K;), and search the bucket
with that address. If two search keysndj map to the same address, becdfkg = h(K;), then the
bucket at the address obtained will contain recends both search key values. In this case we will
have to check the search key value of every reicotfte bucket to get the ones we want.

3. Deletion: If the search key value of the record to be ddlete<;, computeh(K;), then search the
corresponding bucket for the record and deletegberd form the bucket.
Hash Functions

» The worst possible hash function maps all searghviéies to the same bucket. This is undesirable.
A lookup has to examine every such record to fireddesired one.

» An ideal hash function distributes the stored kegmgormly across all the buckets so that every
bucket has the same number of records.

43

Distribution Qualities for Choosing a Hash Function

Since it cannot be known at design time preciséliclvsearch-key values will be stored in the Blech
hash function should be chosen that assigns sé&asckialues to buckets in such a way that the Oistion
has these qualities:

1. Uniform: The distribution is uniform. The hash functioniges each bucket the same number of
search-key values from the set of all possiblectekey values.

2. Random: The distribution is random. In the average casehebucket will have nearly the same
number of values assigned to it regardless of theaadistribution of the search-key values. Morecisely,
the hash value will not be correlated to any ex#ynvisible ordering on the search-key values,hsas
alphabetic ordering or ordering by the length & skearch keys; the hash function will appear tabhdom.

Some Examples lllustrating These Qualities

Example 1:

Suppose we have 26 buckets, and map branch-namescatintfile beginning withi™ letter of the
alphabet to thé" bucket.

Problem:

This does not give uniform distribution. Many mor@mes will be mapped to “B” and “R" than to “Q”
and “X”.

Example 2:

Suppose we have 10 buckets, and a hash functio@posearch-kelgalanceof accountfile. Supposing
min and max values to be 1 and 100,000, we cam tsesh function that divides the values into 1@ean
1 -10,000, 10,001 - 20,000, ..., 90,001 — 100,000.

Problem:

The distribution is not random. It's also not umifoas balances between 1 and 10,000 are far more
common than are records with balances between 9@ 0@ 100,000.

. . bucket 0 bucket 5
How Hash Functions Should be Designed — i :
A-102 Perryridge 400
Hash functions require careful design. A bi A-201 | Perryridge [900
. . . . A-218 Perryridge 700
hash function may result in lookup taking tirr
proportional to the number of search keys in t, .- bciabE

file. A well-designed function gives an averag
case lookup time that is a small conste
independent of the number of search-keys in
file.

bucket 2 bucket 7

Typical hash functions perform som A-275 | Mianus 700
operation on the internal binary machir
representations of characters in the search-}

For example, for a string search-key, the biné,,cxe: 3 Fchet®
representations of all the characters in the Strzz77 T Bagron 750 A-101 | Downtown | 500
could be added and the sum modulo number| A-305 | Round Hill [350 A-110 | Downtown | 600

buckets could be returned. The figure besi
shows the application of such a scheme, with

. bucket 4 bucket 9
buckets, to the account file, under the assumpi————— i
‘th X . - Redwood 700
that thei™ letter in the alphabet is represented
the integei.
Handling of Bucket Overflows Figure: Typical application of a hash function scheme.

So far, we have assumed that, when a record istéasehe bucket to which it is mapped has space to
store the record. If the bucket does not have emspgce, a bucket overflow is said to occur.

44

Causes of bucket overflows

1.

Insufficient buckets. Our estimate of the number of records that thaticed will have was too low,
and hence the number of buckets allotted was rffitismt.

Skew.Some buckets are assigned more records thanreesoso a bucket may overflow even when
other buckets still have space. This situatioraledbucket skew

Causes of Skew

1. Multiple records may have the same search key.
2. The chosen hash function may result in non-unifdistribution of search keys.

Reducing bucket overflows

To reduce the occurrence of overflows, we can:

1.
2.

Choose the hash function more carefully, and makiebestimates of the relation size.

If the estimated size of the relation i and number of records per block fis allocate
(n, / ;) x (1 +d) bucketsinstead of i / f,) bucketsHered is afudge factof, typically around 0.2
Some space is wasted: about 20% of the space ibuitleets will be empty. But the benefit is that
some of the skew is handled and the probabilityvedrflow is reduced.

Handling bucket overflows

Bucket overflows can be handled using two techrsque

1. Closed Hashing.If records must be inserted into a bucket andbilneket is already full, they are

inserted into overflow buckets which are chainegetber in a linked list. Overflow handling using
such a linked list is calledverflow chaining. The form of hash structure that we have just rilesd
is sometimes referred to el®sed hashing

keys buckets overflow
entries
0oa ®
: 0o1 Lisa Srmith 521-8976 L]
John Sroath
002 ®
Lisa Smith
151 ®
John Sraith 531-1234 | e
Sam Doe [522] W x| SamdraDee | 5219655 |
153 Ted Baker 412-4165 L]
154 x
Sanidra Dee
253 ®
Ted Baker
254 Sarn Dhoe 521-5030]
255 ®

Figure: Bucket overflow handling using overflow chaining.

Open Hashing. In this technique, the set of buckets is fixedd dnere are no overflow chains.
Instead, if a bucket is full, the system insertsords in some other bucket in the initial set of
buckets. When a new entry has to be inserted, ubkets are examined, starting with the hashed-to
slot and proceeding in sonpeobe sequenceaintil an unoccupied slot is found. The probe sege
can be any of the following:

Liner probing. The interval between probes is fixed (usually 1).

b. Quadratic probing. The interval between probes increases by sometarangusually 1)
after each probe.

c. Double hashing.The interval between probes is computed by andthagh function.

* Fudge factor: A quantity that is added or sub&ddh order to increase the accuracy of a scientifasure.

45

keys buckets

000
001 | LisaSwith | 521-8976
John Sraith 002
Lisa Smith 151
P3| JohnSwith | S211234
Sam Dioe = B3| SandraDee 521-0655
154 | TedBaker | 4184165
Sandra Des 155
Ted Baker 253
254 | SamDoe 521-5030
235

Figure: Hash collision(bucket overflow) resolved by op
hashing with linear probing (interval=1).

Note that "Td Baker" has a unique hash, mevertheles
collided with "Sandra Dee" which hagareviously collide
with "John Smith'

Comparative analysis of closed and open hashing

Open hashing has been used to construct symbebstétnl compilers and assemblers, but closed hashing
is preferable for database systems. The reasdratigieletion under open hashing is troublesomeallysu
compilers and assemblers perform only lookup asdriron operations in their symbol tables. Howewuer,

a database system insertion-deletion occurs frelyudrhus, open hashing is of only minor importamce
database implementation.

bucket 0

Hash Indices

» Hashing can be used not only fc
file organization, but also for indexbucket 1

structure creation. A215]] A2ty |Bugmion | 40

) . A305 | A-101 | Downtown | 500

» A hash indexorganizes the search A-110 [Downtown | 600

keys, with their associated recorbLlL:‘thl2 A215 | Mianus | 700

pointers, into a hash file structure. — - A-102 | Perryridge | 400

2100} A201 | Perryridge | 900

. =, erryrl gE

> We apply a .haSh_ function on bucket 3 A-218 | Perryridge | 700

search key to |dent|fy_a bucket,_ar A217 A201] A A222 | Redwood | 700

store the key and its associate A-102 A-305 | Round Hill | 350
pointers in the bucket (or iry ceis
overflow buckets). A-218

» Hash indices are always secondea
indices — if the file itself is buckets
organized using hashing, a separ:
primary hash index on it using th
same search-key is unnecessabucketé

However, we use the terrhash | 2222

index to refer to bothsecondary

index structures and hash Figure: Hash index on search key account-numbercobuntile.
organized files Here,B; = h(sum of digits of the account numimeodulo 7)

Static and Dynamic Hashing

In static hashing, we need to fix the Bedf bucket addresses. Since most databases grawtioes if
we are to use static hashing for such a databasbawve three classes of options:

1. Choose a hash function based on the current size tife database.This option will result in
performance degradation as the database grows.

46

2. Choose a hash function based on the anticipated sipf the file at some point of time in future.
Although performance degradation is avoided, aifoggimt amount of space may be wasted.

3. Periodically reorganize the hash structure in respose to the file growth.Such reorganization
involves choosing a new hash function, re-computiveghash function on every record in the file
and generating new bucket assignments. This rema@n is massive and time-consuming
operation. Furthermore, it is necessary to forloiceas to the file during reorganization.

Dynamic hashing techniques allow the hash functmobe modified dynamically to accommodate the
growth or shrinkage of the database while degrading performance amdthout any space overhead.
There are several dynamic hashing techniquesxtimple:

1. Extendable Hashing
2. Linear Hashing

Drawbacks of Hashing

1. Hash function must be chosen when the system isemgnted and it cannot be changed easily
thereatfter if the file being indexed grows or sksin

2. Since the hash function maps search-key valuedixe@ set of bucket addresses, space is wasted if
the set of buckets is made large to handle fugh&wth of the file.

3. If the set of buckets is too small, they will cantaecords of many different search-key values and
bucket overflow can occur. As the file grows, periance suffers.

Comparison of Ordered Indexing and Hashing

To make a wise choice of file organization and xwdg techniques for a relation, a database designer
must consider the following issues:

1. Is the cost of periodic re-organization of indexhash structure acceptable?
2. What is the relative frequency of insertion anceteh?
3. Is it desirable to optimize average access tintkeaexpense of increasing worst-case access time?
4. What types of queries are users likely to pose?
This issue is critical to the choice between indgxand hashing.

Queries that specify a single value
Form: sel ect A, A, ..., A, fromr where A = ¢
Average CasefFavors hashing.

Analysis:

1. Index lookupakes time proportional fog of number of values infor A;.
2. Hash structureprovides average lookup time that is a small @mts{independent of
database size).

Worst Case:Favors Indexing.
Analysis:

1. In hash structureworst-case time is proportional to the numbevadfies inr for A,.
2. Inindex structurethe worst-case time is stitig of number of values in

Conclusion: The worst-case lookup time is unlikely to occuthahashing; hencéor these sorts of
queries (having a specified value for the key)ashing scheme is preferable

Queries that specify a range of values

Form: sel ect A, A, ..., A, fromr where A <c and A > ¢

47

Preferred Scheme:Indexing.
Analysis:

1. Using an index structure, we can find the bucketviduec;, and then follow the pointer
chain to read the next buckets in alphabetic (onemic) order until we fina,.
2. If we have a hash structure instead of an indexcavefind a bucket far; easily, but it is
not easy to find the next buckatsorted order Because:
a. A good hash function assigns values randomly tdxéisc
b. Each bucket may be assigned many search key vaoese cannot chain them
together.

Conclusion: Index methods are preferable where a range oesatuspecified in the query.

Multiple-Key Indices

Problem with Multiple Single-Key Indices

If there are two indices amccountfile, one onbranch-nameand one ormalance then suppose we have
a query like:
sel ect loan-no fromaccount wher e branch-name = "Perryridge ' and balance = 1000

There are 3 possible strategies to process thiyque

1. Use the index obranch-nameo find all records pertaining to Perryridge bifanExamine them to
see if balance = 1000.

2. Use the index oialanceto find all records pertaining to accounts withaoaes of 1000. Examine
them to see if branch-name = ‘Perryridge’.

3. Use the index obranch-nameo find pointers to records pertaining to ‘Perdge’ branch. Also, use
the index orbalanceto find pointers to records pertaining to 1000kd ¢he intersection of these two
sets of pointers.

The third strategy takes advantage of the existefcesultiple indices. This may still not work
well if all the following conditions hold:

a. There are a large number of Perryridge records AND
b. There are a large number of 1000 records AND
c. Only a small number of records pertain to both W®e&lge and 1000.

To speed up the intersection operation, speciatttres such astmap indices can be used.

Advantages of Using Multiple-Key Indices
Suppose we have an index on combined searchbkaggh-namebalance.

With thewhereclausewher e branch-name = 'Perryridge’ and balance = 1000, the index on the
combined search-key will fetch only records thaiséa both conditions. Using separate indices issle
efficient — we may fetch many records (or pointés) satisfy only one of the conditions.

It can also efficiently handleher e branch-name = 'Perryridge’ and balance < 1000.

However, it cannot efficiently handleher e branch-name < 'Perryridge’ and balance = 1000.
For each value of branch-name that is less tharryRege” in alphabetic order, the system locagssords
with a balance value of 1000. However, each reciikely to be in a different disk block, becausfethe
ordering of records in the file, leading to many t/@erations.

To speed up the processing of general multiplecheleey queries (involving one or more comparison
operations), we can use special structuresgikefile, R-tree etc.

48

Index Definitions in SQL

Creating an Index

create [unique] index index-nane on relation-nane (attribute-1list)
Theattribute-list is the list of attributes in relatianthat form the search key for the index.
If the search key is a candidate key, we add threl woque to the definition. In that case,

» If the search-key is not a candidate key, an enmessage will appear.

» If the index creation succeeds, any attempt tarirsseuple violating this requirement will fail.

» The uniquekeyword is redundant if primary keys have beenngef with integrity constraints
already.

For example, to define an index branch-namdor thebranchrelation:

create index b-index on branch(branch-name)

Removing an Index

drop i ndex index-nane

49

