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Chapter 9 

Object-Based Databases 
 

Terms and Definitions 

Object-Relational Data Model 

The object-relational data model is an extension of the relational data model which provides a richer 
type system including complex data types and object orientation. 

Object-Relational Database Systems 

Object-relational database systems are database systems based on the object-relation model and provide 
a convenient migration path for users of relational databases who wish to use object-oriented features. 

Persistent Programming Languages 

Persistent Programming Languages refers to extensions of existing programming languages to add 
persistence and other database features using the native type system of the programming language. 

Object-Oriented Database Systems 

Object-oriented database systems refers to database systems that support an object-oriented type system 
and allow direct access to data from an object-oriented programming language using the native type system 
of the language. 

 

SQL Complex Data Types Syntax with Comparison to OOP Language Syntax 

Structured Types 

SQL: User-Defined Types 

ERD: Composite Attributes 

OOP: Class 

ERD SQL OOP (Java) 

 

create type Name as ( 
 firstname varchar(20), 
 lastname varchar(20) 
) final  

final class Name { 
 String firstname; 
 String lastname; 
} 

 

create type Address as ( 
 street varchar(20), 
 city varchar(20), 
 zipcode varchar(9) 
) not final  

class Address { 
 String street; 
 String city; 
 String zipcode; 
} 

The final  specification for Name indicates that we cannot create subtypes for name, whereas the not 
final  specification for Address indicates that we can create subtypes of address. 

Creating a Table from These Types 

1. By directly using these types in the table declaration: 

Address 

street 

city 

zipcode 

Name 

firstname lastname 
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create table customer as ( 
 name Name, 
 address Address, 
 dateOfBirth date 
) 

2. By declaring a type consisting of these types and then declaring a table of this new type: 

create type CustomerType as ( 
 name Name, 
 address Address, 
 dateOfBirth date 
) not final 

create table customer of CustomerType 

Directly Creating a Table Using Unnamed Row Types Instead of Creating Intermediate Types 

create table customer_r ( 
 name row (firstname varchar(20), 
         lastname varchar(20)), 
 address row (street varchar(20), 
            city varchar(20), 
            zipcode varchar(9)), 
 dateOfBirth date 
) 

Methods 

SQL OOP (Java) 

create type CustomerType as ( 
 name Name, 
 address Address, 
 dateOfBirth date 
) not final 
method ageOnDate(onDate date) 
 returns interval year 
 
create instance method ageOnDate(onDate date) 
 returns interval year 
 for CustomerType 
begin 
 return onDate – self.dateOfBirth; 
end 

class CustomerType { 
 Name name; 
 Address address; 
 Date dateOfBirth; 
 
 int  ageOnDate(Date onDate) { 
  return onDate – this.dateOfBirth; 
 } 
} 

 

The for  clause indicates which type this method is for, while the keyword instance indicates that this 
method executes on an instance of the CustomerType type. The variable self refers to the instance of 
CustomerType on which the method is invoked. 

Method Invocation 

create table customer of CustomerType 
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select name.lastname, ageOnDate(current_date) 
from customer 

Constructor Functions 

• Used to create values of structured types. 

• A function with the same name as a structured type is a constructor function for the structured 
type. 

• Every structured type has a default constructor – i.e. constructor with no arguments. 

• Constructors can be overloaded. 

create function Name (firstname varchar(20), lastname varchar(20)) 
returns Name 
begin 
 set self.firstname = firstname; 
 set self.lastname = lastname; 
end 

Creating a Tuple Using Constructor 

insert into customer 
values ( 
 new Name(′John′, ′Smith′), 
 new Address(′20 Main Street′, ′New York′, ′11001′), 
 date ′1960-8-22′ 
) 

Creating a Tuple without Using Constructor 

insert into customer 
values ( 
  (′John′, ′Smith′), 
  (′20 Main Street′, ′New York′, ′11001′), 
 ′1960-8-22′ 
) 

 

Type Inheritance 

ERD 

 

name address 

Person 

Student 

degree 

department 

Teacher 

salary 

department 

ISA 
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SQL 

create type Person ( 
 name varchar(20), 
 address varchar(20) 
) 

create type Student  under Person ( 
 degree varchar(20), 
 department varchar(20) 
) 

create type Teacher  under Person ( 
 salary integer, 
 department varchar(20) 
) 

OOP (Java) 

class Person { 
 String name; 
 String address; 
} 

class Student  extends Person { 
 String degree; 
 String department; 
} 

class Teacher  extends Person { 
 int  salary; 
 String department; 
} 

Multiple Inheritance 

create type TeachingAssistant  under Student, Teacher 

However, the attribute department is defined separately in Student and Teacher and thus conflict in 
TeachingAssistant. To avoid a conflict between the two occurrences of department, we can rename them by 
using an as clause: 

create type TeachingAssistant  
 under Student with  (department as student_dept), 
            Teacher with  (department as teacher_dept) 

Notes 

• Multiple inheritance is not supported in current SQL standard (up to SQL:1999 and SQL:2003). 

• Subtypes can override methods of the supertype. 

• Allowing creation of subtypes from types can be controlled by the keywords final  and not final . 

 

Table Inheritance 

create table people of Person 
create table students of Student under people 
create table teachers of Teacher under people 
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Notes 

• Types of the subtables must be subtypes of the type of the parent table. Therefore, every attribute 
present in people is also present in the subtables. 

• When we declare students and teachers as subtables of people, every tuple present in students or 
teachers becomes also implicitly present in people. Thus, if a query uses the table people, it will 
find not only tuples directly inserted into that table, but also tuples inserted into its subtables, 
namely students and teachers. However, only those attributes that are present in people can be 
accessed. 

• SQL permits us to find tuples that are in people but not in its subtables by using “only people” in 
place of people in a query. The only keyword can also be used in delete and update statements. 
Without the only keyword, a delete statement on a supertable, such as people, also deletes tuples 
that were originally inserted in subtables. 

• Multiple inheritance of tables is not supported by SQL. However, conceptually it is possible: 

create table teaching_assistants of TeachingAssistant under students, teachers 

As a result of the declaration, every tuple present in the teaching_assistants table is also 
implicitly present in the teachers and in the students table, and in turn in the people table. 

Therefore, SQL subtables cannot be used to represent overlapping specializations from the ERD. 

Consistency Requirements for Subtables 

There are some consistency requirements for subtables. Before we state the constraints, we need a 
definition: we say that tuples in a subtable corresponds to tuples in a parent table if they have the same 
values for all inherited attributes. Thus, corresponding tuples represent the same entity. 

The consistency requirements for subtables are: 

1. Each tuple of the supertable can correspond to at most one tuple in each of its immediate subtables. 

2. SQL has an additional constraint that all the tuples corresponding to each-other must be derived from 
one tuple (inserted into one table). 

For example, without the first condition, we could have two tuples in students (or teachers) that 
correspond to the same person. The second condition actually prevents a person from being both a teacher 
and a student. 

 

Collection Types: Arrays and Multisets 

• A multiset is an unordered collection where an element may occur multiple times. Multisets are 
like sets, except that a set allows each element to occur at most once. 

• Unlike elements in a multiset, the elements of an array are ordered. 

create type Book as ( 
 title varchar(20), 
 author_array varchar(20) array [10], 

pub_date date, 
publisher Publisher, 
keyword_set varchar(20) multiset 

) 

Creating Collection Values 

We can insert a tuple into the books relation as follows: 
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insert into books 
values ( 

′Compilers′,  
array [′Smith′,′Jones′],  
new Publisher(′McGraw-Hill′,′New York′),  
multiset[′parsing′,′analysis′]) 

) 

Querying Collection-Valued Attributes: Nesting and Unnesting 

Unnesting 

The transformation of a nested relation into a form with fewer (or no) relation-valued attributes is called 
unnesting. 

Consider the following books relation: 

title author_array publisher (name, branch) keyword_set 

Compilers [Smith, Jones] (McGraw-Hill, New York) {parsing, analysis} 

Networks [Jones, Frick] (Oxford, London) {Internet, Web} 

Suppose that we want to convert the relation into a single flat relation, with no nested relations or 
structured types as attributes. We can use the following query to carry out the task: 

select title, A.author, publisher.name as pub_name, publisher.branch as pub_branch, K.keyword 
from  books as B, unnest (B.author_array) as A(author), unnest (B.keyword_set) as K(keyword) 

The variable B in the from  clause is declared to range over books. The variable A is declared to range 
over the authors in author_array for the book B, and K is declared to range over the keywords in the 
keyword_set of the book B. 

The result of the preceding query is the following relation which is in 1NF: 

title author pub_name pub_branch keyword 

Compilers Smith McGraw-Hill New York parsing 

Compilers Jones McGraw-Hill New York parsing 

Compilers Smith McGraw-Hill New York analysis 

Compilers Jones McGraw-Hill New York analysis 

Networks Jones Oxford London Internet 

Networks Frick Oxford London Internet 

Networks Jones Oxford London Web 

Networks Frick Oxford London Web 

When unnesting an array, the previous query loses information about the ordering of elements in the 
array. The unnest with ordinality  clause can be used to get this information, as illustrated by the following 
query: 

select title, A.author, publisher.name as pub_name, publisher.branch as pub_branch, K.keyword 
from  books as B, unnest (B.author_array) with ordinality  as A(author), unnest (B.keyword_set) as K(keyword) 

 

Nesting 

The reverse process of transforming a 1NF relation into a nested relation is called nesting. 

Nesting can be carried out by an extension of grouping in SQL. In the normal use of grouping in SQL, a 
temporary multiset relation is (logically) created for each group, and an aggregate function is applied on the 
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temporary relation to get a single (atomic) value. The collect function returns the multiset of values instead 
of creating a single value. 

The above 1NF relation can be converted back to the nested relation using the following query: 

select title, collect(author) as author_set, Publisher(pub_name, pub_branch) as publisher,  
collect(keyword) as keyword_set 

from  flat_books 
group by title, publisher 

Another approach to creating nested relations is to use subqueries in the select clause. An advantage of 
the subquery approach is that an order by clause can be optionally used in the subquery to generate results 
in a desired order, which can then be used to create an array. 

The following query illustrates this approach; the keywords array  and multiset specify that an array and 
multiset (respectively) are to be created from the results of the subqueries. 

select   title, 
 array  ( 

select author 
from  authors as A 
where A.title = B.title 
order by A.position 

) as author_array, 
Publisher(pub-name, pub-branch) as publisher, 
multiset ( 

select keyword 
from  keywords as K 
where K.title = B.title 

) as keyword_set, 
from    flat_books as B 

 

Updating Multiset Attributes 

The SQL standard does not provide any way to update multiset attributes except by assigning a new 
value. For example, to delete a value v from a multiset attribute A, we would have to set it to (A except all 
multiset[v]). 

 

Object-Identity and Reference Types in SQL 

Please read the topic (no. 9.6, pages 376-378 – 5th edition) from the book thoroughly… � 

 

Implementing O-R Features 

Storing Complex Data Types 

The complex data types supported by object-relational systems can be translated to the simpler system of 
relational databases. The techniques for converting E-R model features to tables can be used, with some 
extensions, to translate object-relational data to relational data at the storage level. 

How Subtables can be Stored in an Efficient Manner 

Subtables can be stored in an efficient manner, without replication of all inherited fields, in one of two 
ways: 
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• Each table stores the primary key (which may be inherited from a parent table) and the attributes 
are defined locally. Inherited attributes (other than the primary key) do not need to be stored, and 
can be derived by means of a join with the supertable, based on the primary key. 

• Each table stores all inherited and locally defined attributes. When a tuple is inserted, it is stored 
only in the table in which it is inserted, and its presence is inferred in each of the supertables. 
Access to all attributes of a tuple is faster, since a join is not required. 

How Arrays and Multisets can be Represented 

Implementations may choose to represent array and multiset types directly, or may choose to use a 
normalized representation internally. Normalized representations tend to take up more space and require an 
extra join / grouping cost to collect data in an array or multiset. However, normalized representations may 
be easier to implement. 

 

Summary of Strengths of Various Kinds of Database Systems 

• Relational System: Simple data types, powerful query languages, high protection. 

• Persistent Programming Language-Based OODBs: Complex data types, integration with 
programming language, high performance. 

• Object-Relational Systems: Complex data types, powerful query languages, high protection. 
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Chapter 15 

Transactions 
 

Transactions 

A transaction is a unit of program execution that accesses and possibly updates various data items. 

For example, a transfer of funds from a checking account to a savings account consists of several 
operations from the point of view of the database system. All these operations result into a single 
transaction. 

The ACID Properties of Transaction 

To ensure integrity of the data, we require that the database system maintain the following properties of 
the transactions: 

� Atomicity 

Either all operations of the transaction are reflected properly in the database or none at all. 

� Consistency 

Execution of a transaction in isolation (that is, with no other transaction executing concurrently) 
preserves the consistency of the database. 

� Isolation 

Even though multiple transactions may execute concurrently, the system guarantees that, for 
every pair of transactions Ti and Tj, it appears to Ti that either Tj finished execution before Ti 
started, or Tj started execution after Ti finished. Thus, each transaction is unaware of other 
transactions executing concurrently in the system. 

� Durability  

After a transaction completes successfully, the changes it has made to the database persist, even 
if there are system failures. 

How Transaction Accesses Data 

Transactions access data using two operations: 

� read(X), which transfers the data item X from the database to a local buffer belonging to the 
transaction that executed the read operation. 

� write(X), which transfers the data item X from the local buffer of the transaction that executed the 
write back to the database. 

ACID Properties Explained 

Let Ti be a transaction that transfers $50 from account A to account B. This transaction can be defined as 

Ti: read(A); 
A := A – 50; 
write(A); 
read(B); 
B := B + 50; 
write(B). 

Let us now consider each of the ACID requirements. 
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� Consistency 

The consistency requirement here is that the sum of A and B be unchanged by the execution of 
the transaction. 

� Atomicity 

If the system crashes after write(A) operation, then the database will not be in a consistent state. 
Thus, it must be ensured that either all of the operations succeed or none of the operations occur. 

� Durability  

In a real database system, the write operation does not necessarily result in the immediate update 
of the data on the disk; the write operation may be temporarily stored in memory and executed 
on the disk later. 

The durability property guarantees that, once a transaction completes successfully, all the updates 
that it carried out on the database persist, even if there is a system failure after the transaction 
completes execution. 

� Isolation 

Even if the consistency and atomicity properties are ensured for each transaction, if several 
transactions are executed concurrently, their operations may interleave in some undesirable way 
(concurrency problem), resulting in an inconsistent state. 

For example, after the transaction Ti above completes up to the write(A) operation, another 
transaction Tj concurrently running reads A and B at this point and computes A + B, it will 
observe an inconsistent value. 

Furthermore, if Tj then performs updates on A and B based on the inconsistent values that it read, 
the database may be left in an inconsistent state even after both transactions have completed. 

Transaction State 

A transaction must be in one of the following states: 

� Active, the initial state; the transaction stays in this 
state while it is executing. 

� Partially committed , after the final statement has been 
executed. 

� Failed, after the discovery that normal execution can 
no longer proceed. 

� Aborted, after the transaction has been rolled back and 
the database restored to its state prior to the start of the 
transaction. 

Two options after a transaction has been aborted: 

1. Restart the transaction; can be done only if hardware or software error occurs. 
2. Kill the transaction - internal logical error. 

� Committed, after successful completion. 

Implementation of Atomicity and Durability 

The recovery-management component of a database system supports atomicity and durability by a 
variety of schemes. 

Figure: State diagram of a transaction. 
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The Shadow-Copy Scheme 

� Assume that only one transaction is 
active at a time. It also assumes that 
the database is simply a file on disk. 

� A pointer called db_pointer always 
points to the current consistent copy 
of the database. 

� All updates are made on a shadow 
copy of the database, and db_pointer 
is made to point to the updated 
shadow copy only after the 
transaction reaches partial commit and all updated pages have been flushed to disk. 

� In case transaction fails, old consistent copy pointed to by db_pointer can be used, and the 
shadow copy can be deleted. 

Drawbacks of shadow-copy scheme 

1. Assumes disks do not fail 

2. Useful for text editors, but extremely inefficient for large databases since executing a single 
transaction requires copying the entire database. 

3. Does not handle concurrent transactions. 

Concurrent Executions 

Advantages of Concurrent Executions 

Multiple transactions are allowed to run concurrently in the system. Advantages are: 

1. Improved throughput and resource utilization: I/O activity and CPU activity can operate in 
parallel leading to better transaction throughput. One transaction can be using the CPU while 
another is reading from or writing to the disk. The processor and disk utilization also increase; 
the processor and disk spend less time idle. 

2. Reduced waiting time and average response time: Short transactions need not wait behind 
long ones. If the transactions are operating on different parts of the database, it is better to run 
them concurrently, sharing the CPU cycle and disk accesses among them. It also reduces the 
average response time - the average time for a transaction to be completed after it has been 
submitted. 

Concept of Concurrent Executions 

Overview: 

First, we need to know how to schedule the instructions in transactions for execution. 

Next, we’ll see how to serial schedule transactions, i.e. how to schedule transactions so that one 
transaction starts executing after another one finishes execution. 

Then we’ll consider concurrent execution rather than serial execution of transactions. We’ll see that 
concurrent executions might cause the isolation property to fail, i.e. the database may become inconsistent 
because of concurrent executions. We’ll try to find out exactly in which cases concurrent execution fails to 
maintain isolation. Then we’ll try to find out how to serial schedule transactions to maintain isolation so that 
they might appear like they are concurrently executing. More elaborately, we’ll split each transaction into 
pieces and then serial schedule those pieces. This is called serializability. 

Figure: Shadow-copy technique for atomicity and durability. 
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Example transactions we’re going to use for explaining the concept of concurrent executions: 

Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B. These transactions can 
be scheduled serially in two ways – T2 after T1, and T1 after T2. The definition of the transactions and these 
two possible combinations of serial schedule are depicted as follows: 

 

Schedule 

A schedule is a sequence of instructions that specify the chronological order in which instructions of 
transactions are executed. 

� A schedule for a set of transactions must consist of all instructions of those transactions. 

� A schedule must preserve the order in which the instructions appear in each individual 
transaction. 

For example, in transaction T1, the instruction write(A) must appear before the instruction 
read(B), in any valid schedule. 

Serial Schedule 

A serial schedule is a schedule which consists of a sequence of instructions from various transactions, 
where the instructions belonging to one single transaction appear together in that schedule. 

Thus, for a set of n transactions, there exist n! different valid serial schedules. 

The Case of Concurrent Schedules 

When the database system executes several transactions concurrently, the corresponding schedule no 
longer needs to be serial. If two transactions are running concurrently, the operating system may execute one 
transaction for a little while, then perform a context switch, execute the second transaction for a little while, 
then switch back to the first transaction for some time, and so on. 

Several execution sequences are possible, since the various instructions from both transactions may now 
be interleaved. 

In general, it is not possible to predict exactly how many instructions of a transaction will be executed 
before the CPU switches to another transaction. Thus, the number of possible schedules for a set of n 
transactions is much larger than n! 

However, not all concurrent executions result in a correct or consistent state. 

For example, schedule 3 in the next figure preserves isolation, but schedule 4 doesn’t. 

We can ensure consistency of the database under concurrent execution by making that any schedule that 
is executed has the same effect as a schedule that could have occurred without any concurrent execution. 
That is, the schedule should, in some sense, be equivalent to a serial schedule. 

Schedule 1 

T1 T2 
read(A); 
A := A – 50; 
write(A); 
read(B); 
B := B + 50; 
write(B) 

 

 

 

 

 

 

read(A); 
temp := A * 0.1; 
A := A – temp; 
write(A); 
read(B); 
B := B + temp; 
write(B) 

 

Schedule 2 

T1 T2 
 

 

 

 

 

 

 

read(A); 
A := A – 50; 
write(A); 
read(B); 
B := B + 50; 
write(B) 

read(A); 
temp := A * 0.1; 
A := A – temp; 
write(A); 
read(B); 
B := B + temp; 
write(B) 
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Serializability 

Since transactions are programs, it is computationally difficult to determine 
exactly what operations a transaction performs and how operations of various 
transactions interact. So, we ignore operations other than read and write instructions; 
and we assume that, between a read(Q) and a write(Q) instruction on a data item Q, a 
transaction may perform an arbitrary sequence of operations on the copy of Q that is 
residing in the local buffer of the transaction. Our simplified schedules consist of only 
read and write instructions as depicted in the figure beside. 

In this section we discuss different forms of schedule equivalence; they lead to the 
notions of conflict serializability and view serializability. 

Conflict Serializability 

Conflicting Instructions 

We need to find out the cases when concurrent executions fail. 

Let us consider a schedule S in which there are two consecutive instructions, l i and l j (i ≠ j) of 
transactions Ti and Tj respectively. 

If l i and l j, refer to different data item, then we can swap them without affecting the results of any 
instruction in the schedule. 

However, if l i and l j refer to the same data item Q, then the order of the two steps may matter. The 
following four cases need to be considered: 

 

Schedule S 
Ti Tj 

Ii  

Ij 

 

Schedule S 
Ti Tj 

read(Q)  

read(Q) 

Schedule S 
Ti Tj 

read(Q)  

write(Q) 

Schedule S 
Ti Tj 

write(Q)  

read(Q) 

Schedule S 
Ti Tj 

write(Q)  

write(Q) 
 

Order matters? No Yes Yes Yes 
Why? The same value of Q 

is read by Ti and Tj 
regardless of the 
order. 

If I i comes before I j, Ti 
doesn’t read the value of 
Q that is written by Tj. 
Else, Ti reads the value 
of Q that is written by Tj. 

Similar to the 
previous case. 

The value obtained by the next 
read(Q) instruction of S is 
affected, since the result of only 
the latter write instruction is 
preserved in the database. 

 

Schedule S 
Ti Tj 

 

read(Q) 
read(Q) 

 

Schedule S 
Ti Tj 

 

read(Q) 
write(Q) 

 
 

Schedule S 
Ti Tj 

 

write(Q) 
read(Q) 

 

Schedule S 
Ti Tj 

 

write(Q) 
write(Q) 

 

Schedule 3 

T1 T2 
read(A); 
A := A – 50; 
write(A); 
 

 

 

 

read(B); 
B := B + 50; 
write(B) 

 

 

 

read(A); 
temp := A * 0.1; 
A := A – temp; 
write(A); 

 

 

 
read(B); 
B := B + temp; 
write(B) 

 

Schedule 4 

T1 T2 
read(A); 
A := A – 50; 
 

 

 

 

 

write(A); 
read(B); 
B := B + 50; 
write(B) 

 

 

read(A); 
temp := A * 0.1; 
A := A – temp; 
write(A); 
read(B); 
 
 
 
 
B := B + temp; 
write(B) 

 Schedule 3 – A concurrent schedule 
equivalent to schedule 1. 
 

Schedule 4 – A concurrent schedule. 
 

Schedule 3 

T1 T2 
read(A) 
write(A) 
 

 

read(B) 
write(B) 

 

 

read(A) 
write(A) 

 

 

read(B) 
write(B) 

Schedule 3 – Showing 
only the read and 
write instructions. 
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So, instructions l i and l j of transactions Ti and Tj conflict if and only if there exists same item Q accessed 
by both l i and l j and at least one of these instructions is a write operation on Q. 

Conflict Equivalence and Conflict Serializability 

Let l i and l j be consecutive instructions of a schedule S. If l i and l j are instructions of different 
transactions and l i and l j do not conflict, then we can swap the order of l i and l j to produce a new schedule S´. 
We expect S to be equivalent of S´, since all instructions appear in the same order in both schedules except 
for l i and l j, whose order does not matter. 

If a schedule S can be transformed into a schedule S´ by a series of swaps of non-conflicting instructions, 
we say that S and S´ are conflict equivalent. 

We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule. 

 

View Serializability 

Let S and S  ́be two schedules with the same set of transactions. The schedules S and S  ́are said to be 
view equivalent if the following three conditions are met: 

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then transaction 
Ti must, in schedule S ,́ also read the initial value of Q. 

 

2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and that value was 
produced by a write (Q) operation executed by transaction Tj, then the read(Q) operation of 
transaction Ti must, in schedule S´, also read the value of Q that was produced by the same 
write (Q) operation in transaction Tj. 

Schedule 1 

T1 T2 
read(A) 
write(A) 
read(B) 
write(B) 

 

 

 

 

read(A) 
write(A) 
read(B) 
write(B) 

Schedule 2 

T1 T2 
 

 

 

 

read(A) 
write(A) 
read(B) 
write(B) 

read(A) 
write(A) 
read(B) 
write(B) 

Schedule 3 

T1 T2 
read(A) 
write(A) 
 

 

read(B) 
write(B) 

 

 

read(A) 
write(A) 
 

 

read(B) 
write(B) 

Not view 

equivalent. 

Initial values of 

A and B are read 
by T1 in Schedule 

1, but not by T1 in 

Schedule 2. 

View equivalent. 

Initial values of 

A and B are read 
by T1 in both 

schedules. 

Schedule 3 

T1 T2 
read(A) 
write(A) 
 

 

read(B) 
write(B) 

 

 

read(A) 
write(A) 

 

 

read(B) 
write(B) 

 

T1 T2 
read(A) 
write(A) 
 

read(B) 
 

write(B) 

 

 

read(A) 
 

write(A) 

 

read(B) 
write(B) 

 

T1 T2 
read(A) 
write(A) 
read(B) 
 

 

write(B) 

 

 

 

read(A) 
write(A) 

 

read(B) 
write(B) 

 

T1 T2 
read(A) 
write(A) 
read(B) 
 

write(B) 

 

 

 

read(A) 
 

write(A) 

read(B) 
write(B) 

Schedule 6 

T1 T2 
read(A) 
write(A) 
read(B) 
write(B) 

 

 

 

 

read(A) 
write(A) 

read(B) 
write(B) 

Figure: Transforming Schedule 3 – which is conflict equivalent to serial schedule 6 – into Serial Schedule 6. 
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3. For each data item Q, the transaction (if any) that performs the final write (Q) operation in 
schedule S must perform the final write (Q) operation in schedule S .́ 

 

Conditions 1 and 2 ensure that each transaction reads the same values in both schedules and, therefore, 
performs the same computation. Condition 3, coupled with conditions 1 and 2, ensures that both schedules 
result in the same final system state. 

Every conflict serializable schedule is also view serializable, but there are view serializable schedules 
that are not conflict serializable. Schedule 9 is view serializable, but not conflict serializable, since every 
pair of consecutive instructions conflict, and, thus, no swapping of instructions is possible. 

 

Blind Writes 

Observe that, in schedule 9, transactions T4 and T6 perform write(Q) operations without having 
performed a read(Q) operation. Writes of this sort is called blind writes that appear in every view 
serializable schedule that is not conflict serializable. 

Recoverability 

So far we have assumed that there are no transaction failures. We now need to address the effect of 
transaction failures on concurrently running transactions. 

If a transaction Ti fails, for whatever reason, we need to undo the effect of this transaction to ensure the 
atomicity property of the transaction. In a system that allows concurrent execution, it is necessary also to 
ensure that any transaction Tj that is dependent on Ti (i.e. Tj has read data written by Ti) is also aborted. To 
achieve this surety, we need to place restrictions on the type of schedules permitted in the system. 

Serial Schedule <T3, T4, T6> 

T3 T4 T6 

read(Q) 

write(Q) 
 

 

write(Q) 

 

 

 

write(Q) 

Schedule 9 
(View equivalent to Schedule <T3, T4, T6>) 

T3 T4 T6 

read(Q) 

 

write(Q) 

 

write(Q) 

 

 

 

write(Q) 

Schedule 1 

T1 T2 
read(A) 
write(A) 
read(B) 
write(B) 

 

 

 

 

read(A) 
write(A) 
read(B) 
write(B) 

Schedule 2 

T1 T2 
 

 

 

 

read(A) 
write(A) 
read(B) 
write(B) 

read(A) 
write(A) 
read(B) 
write(B) 

Schedule 3 

T1 T2 
read(A) 
write(A) 
 

 

read(B) 
write(B) 

 

 

read(A) 
write(A) 
 

 

read(B) 
write(B) 

Not view 

equivalent. 

Final values of A 
and B are written 
by T2 in Schedule 

1, but not by T2 

in Schedule 2. 

View equivalent. 

Final values of A 
and B are written 
by T2 in both 

schedules. 

Schedule 2 

T1 T2 
 

 

 

 

read(A) 
write(A) 
read(B) 
write(B) 

read(A) 
write(A) 
read(B) 
write(B) 

Schedule 10 

T1 T2 
 

 

read(A) 
write(A) 
 

 

read(B) 
write(B) 

read(A) 
write(A) 
 

 

read(B) 
write(B) 

View equivalent. 

A and B are written by T2 and 

read by T1 in Schedule 2. The 

same write operations by T2 

and read operations by T1 

have been performed in 

Schedule 10. 
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Recoverable Schedules 

A recoverable schedule is one where, for each pair of transactions Ti and Tj such that transaction Tj reads 
a data item previously written by a transaction Ti, the commit operation of Ti appears before the commit 
operation of Tj. 

Cascading Rollback and Cascadeless Schedules 

The phenomenon, in which a single transaction failure leads to a series of transaction rollbacks, is called 
cascading rollback. 

A cascadeless schedule is one where, for each pair of transactions Ti and Tj such that Tj reads a data item 
previously written by Ti, the commit operation of Ti appears before the read operation of Tj. 

Testing for Serializability 

The problem: How to determine, given a particular schedule S, whether the schedule is serializable? 

Testing for Conflict Serializability 

1. Consider a schedule S of a set of transactions T1, T2, ..., Tn. 

2. We construct a directed graph called precedence graph, from S. This graph consists of a pair G = (V, 
E), where V is the set of vertices and E is a set of edges. 

The set of vertices consists of all the transactions participating in the schedule. The set of edges 
consists of all the edges Ti → Tj for which one of the three conditions holds: 

a. Ti executes write(Q) before Tj executes read(Q). 
b. Ti executes read(Q) before Tj executes write(Q). 
c. Ti executes write(Q) before Tj executes write(Q). 

If an edge Ti → Tj exists in the precedence graph, then, in any serial schedule S´ equivalent to S, Ti 
must appear before Tj. 

3. If the precedence graph has a cycle, then schedule S is not conflict serializable. If no cycle exists, 
then it is conflict serializable. 

4. If precedence graph is acyclic, the serializability order can be obtained by a topological sorting of 
the graph. 

 

Testing for View Serializability 

The problem of checking if a schedule is view serializable falls in the class of NP-complete problems. 
Extension of the testing for conflict serializability to test for view serializability has cost exponential in the 
size of the precedence graph. 

However practical algorithms that just check some sufficient conditions for view serializability can still 
be used. That is, if the sufficient conditions are satisfied, the schedule is view serializable, but there may be 
view serializable schedules that do not satisfy sufficient conditions. 

Schedule 4 

T1 T2 
read(A) 
 

 

 

write(A) 
read(B) 
write(B) 

 

read(A) 
write(A) 

read(B) 

 
 

 

write(B) 

Schedule 2 

T1 T2 
 

 

 

 

read(A) 
write(A) 
read(B) 
write(B) 

read(A) 
write(A) 

read(B) 

write(B) 

Schedule 1 

T1 T2 
read(A) 
write(A) 
read(B) 
write(B) 

 

 

 

 

read(A) 
write(A) 

read(B) 

write(B) 

T1 T2 T2 T1 T1 T2 
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Chapter 16 

Concurrency Control 
 

Objective 

How to ensure/implement the serializability property of concurrent schedules? 

Concurrency Schemes/Protocols 

1. Lock-Based Protocols 
Theme: Data items are accessed in a mutually exclusive manner. 
Locking Modes: 
1. Shared – Read-only 
2. Exclusive – Read-Write 
Locking Protocol: 
When a transaction Ti requests a lock on a data item Q in a particular mode M, the lock can be 
granted provided that: 
1. There is no other transaction holding a lock on Q in a mode that conflicts with M. [Ensuring 

serializability] 
2. There is no other transaction that is waiting for a lock on Q and that made its lock request before 

Ti. [Ensuring that starvation doesn’t occur] 
a. Two-Phase Locking Protocol 

Each transaction issues lock and unlock requests in two phases: 
1. Growing Phase – May obtain locks, but may not release locks 
2. Shrinking Phase – May release locks, but may not obtain any new locks 
Problems: 
1. Doesn’t ensure freedom from deadlock. 
2. Cascading rollback might occur. 

Solution: 
1. Strict Two-Phase Locking Protocol 

Requirements: 
1. Two-phase locking 
2. All exclusive-mode locks taken by a transaction be held until that transaction 
commits. 

2. Rigorous Two-Phase Locking Protocol 
Requirements: 
1. Two-phase locking 
2. All locks taken by a transaction be held until that transaction commits. 

3. Concurrency might become less. 
Solution: 
Two-Phase Locking with Lock Conversion 
Requirements: 
1. Two-phase locking 
2. A shared lock can be upgraded to an exclusive lock in the growing phase, and an 
exclusive lock can be downgraded to a shared lock in the shrinking phase. 

2. Graph-Based Protocols 
Theme: Construct locking protocols requiring having prior knowledge about the order in which the 
database items will be accessed. 

a. Tree Protocol 
The only lock instruction allowed is lock-X. Each transaction Ti can lock a data item at most 
once, and must observe the following rules:  
1. The first lock by Ti may be on any data item. 
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2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is currently locked 
by Ti. 

3. Data items may be unlocked at any time. 
4. A data item that has been locked and unlocked by Ti cannot subsequently be relocked by 

Ti. 
Advantages: 
1. Ensures conflict serializability. 
2. Ensures freedom from deadlock. 
Problems: 
1. Doesn’t ensure recoverability. 
2. Doesn’t ensure cascadelessness. 
How to ensure recoverability and cascadelessness: 
The protocol can be modified to not permit release of exclusive locks until the end of the 
transaction. 

Problem with this solution: 
Holding exclusive locks until the end of the transaction reduces concurrency. 
Alternative solution improving concurrency, but ensuring only recoverability: 
For each data item with an uncommitted write, we record which transaction performed 
the last write to the data item. Whenever a transaction Ti performs a read of an 
uncommitted data item, we record a commit dependency of Ti on the transaction that 
performed the last write to the data item. Transaction Ti is then not permitted to commit 
until the commit of all transactions on which it has a commit dependency. If any of these 
transactions aborts, Ti must also be aborted. 

Advantages over two-phase locking protocol: 
1. Unlike two-phase locking, it’s deadlock-free, so no rollbacks are required. 
2. Unlocking may occur earlier which may lead to shorter waiting times and to an increase 

in concurrency. 
Disadvantages: 
1. In some cases, a transaction may have to lock data items that it does not access. This 

additional locking results in increased locking overhead, the possibility of additional 
waiting time, and a potential decrease in concurrency. 

2. Without prior knowledge of what data items will need to be locked, transactions will have 
to lock the root of the tree, and that can reduce concurrency greatly. 

3. Timestamp-Based Protocols 
Theme: Determines the serializability order by selecting an ordering among transactions in advance. 
Timestamp Values: 
1. W-timestamp(Q) – largest timestamp of any transaction that executed write(Q) successfully. 
2. R-timestamp(Q) – largest timestamp of any transaction that executed read(Q) successfully. 

a. Timestamp-Ordering Protocol 
Objective: Ensures that any conflicting read and write operations are executed in timestamp 
order. 
Protocol Operation: 
1. Suppose a transaction Ti issues a read(Q). 

a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was already 
overwritten. 
Hence, the read operation is rejected, and Ti is rolled back. 

b. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and R-
timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)). 

2. Suppose that transaction Ti issues write (Q). 
a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed 

previously, and the system assumed that that value would never be produced. 
Hence, the write  operation is rejected, and Ti is rolled back. 

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. 
Hence, this write  operation is rejected, and Ti is rolled back. 

c. Otherwise, the write  operation is executed, and W-timestamp(Q) is set to TS(Ti). 
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If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance of 
either a read or write operation, the system assigns it a new timestamp and restarts it. 

Advantages: 

1. Ensures conflict serializability. 
2. Ensures freedom from deadlock. 

Disadvantages: 

1. Possibility of starvation of long transactions if a sequence of conflicting short transactions 
causes repeated restarting of the long transaction. 
Possible Solution: 
If a transaction is found to be getting restarted repeatedly, conflicting transactions need to 
be temporarily blocked to enable the transaction to finish. 

2. Generates schedules that are not recoverable. 
Possible Solutions: 
1. (Recoverability and cascadelessness) 

A transaction is structured such that its writes are all performed at the end of its 
processing. 
All writes of a transaction form an atomic action; no transaction may execute while a 
transaction is being written. 
A transaction that aborts is restarted with a new timestamp. 

2. (Recoverability and cascadelessness) 
Limited form of locking; whereby reads of uncommitted items are postponed until the 
transaction that updated the item commits. 

3. (Only recoverability) 
Use commit dependencies to ensure recoverability. 

b. Thomas’ Write Rule 
Objective: Allowing greater potential concurrency than the general timestamp ordering 
protocol. 
Protocol: 
Exactly the same as the general timestamp ordering protocol except that in rule 2(b), the write 
operation is ignored in cases where TS(Ti) ≥ R-timestamp(Q). 

4. Validation-Based Protocols 
Theme: In cases where a majority of transactions are read-only transactions, the rate of conflicts 
among transactions may be low. It may be better to use a scheme that imposes less overhead. 

a. Optimistic Concurrency Control Scheme 
The validation test for transaction Tj requires that, for all Ti with TS(Ti) < TS(Tj) either one of 
the following conditions holds: 

1. finish(Ti) < start(Tj) 
2. start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti does not 

intersect with the set of data items read by Tj. 
Advantage: Automatically guards against cascading rollbacks. 
Disadvantage: Possibility of starvation of long transactions. 

Avoiding Starvation: Conflicting transactions must be temporarily blocked to enable the 
long transaction to finish. 

5. Multiple Granularity 1 
Theme: So far the concurrency-control schemes described used each individual data item as the unit 
on which synchronization has performed. There are circumstances, where it would be advantageous 
to group several data items and to treat them as one individual synchronization unit. So, a mechanism 
is needed to allow the system to define multiple levels of granularities. This allows data items to be 
of various sizes and define a hierarchy of data granularities, where the small granularities are nested 
within larger ones. 

a. Multiple Granularity Locking Protocol 
Each transaction Ti can lock a node Q, using the following rules: 

                                                           
1 Granularity: the quality of being composed of relatively large particles. 
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1. The lock compatibility matrix must be observed. 
2. The root of the tree must be locked first, and may be locked in any mode. 
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is currently locked 

by Ti in either IX or IS mode. 
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q is currently 

locked by Ti in either IX or SIX mode. 
5. Ti can lock a node only if it has not previously unlocked any node (that is, Ti is two-

phase). 
6. Ti can unlock a node Q only if none of the children of Q are currently locked by Ti. 
Advantages: 
1. Enhances concurrency 
2. Reduces lock overhead 
Disadvantage: Deadlock is possible. However, there are techniques to reduce deadlock 
frequency in this protocol, and also to eliminate deadlock entirely. 

6. Multiversion Schemes 
Theme: The concurrency-control schemes discussed thus far ensure serializability by either delaying 
an operation or aborting the transaction that issued the operation. These difficulties could be avoided 
if old copies of each data item were kept in a system. 

a. Multiversion Timestamp-Ordering Scheme 
Suppose that transaction Ti issues a read(Q) or write (Q) operation. Let Qk denote the version 
of Q whose write timestamp is the largest write timestamp less than or equal to TS(Ti). 
1. If transaction Ti issues a read(Q), then the value returned is the content of version Qk. 
2. If transaction Ti issues a write (Q) 

1. If TS(Ti) <  R-timestamp(Qk), then transaction Ti is rolled back. 
2. If TS(Ti) =  W-timestamp(Qk), the contents of Qk are overwritten. 
3. Else a new version of Q is created. 

Advantage: A read request never fails and is never made to wait. In typical database systems, 
where reading is a more frequent operation than is writing, this advantage may be of major 
practical significance. 
Disadvantages: 
1. The reading of a data item also requires the updating of the R-timestamp field, resulting 

in two potential disk accesses, rather than one. 
2. The conflicts between transactions are resolved through rollbacks, rather than through 

waits. This alternative may be expensive. 
Possible Solution: Use multiversion two-phase locking. 

3. Does not ensure recoverability and cascadelessness. 
Possible Solution: It can be extended in the same manner as the basic timestamp-ordering 
scheme to make it recoverable and cascadeless. 

b. Multiversion Two-Phase Locking 
Objective: Attempts to combine the advantages of multiversion concurrency control with the 
advantages of two-phase locking. 
Operation: 
1. Read-only  transactions  are  assigned  a  timestamp  by  reading  the  current  value of ts-

counter before they  start  execution; they follow  the  multiversion  timestamp-ordering 
protocol for performing reads. 

2. When an update transaction wants to read a data item, it obtains a shared lock on it, and 
reads the latest version. 

3. When it wants to write an item, it obtains X-lock on it; it then creates a new version of the 
item and sets this version's timestamp to ∞. 

4. When update transaction Ti completes, commit processing occurs: 
a. Ti sets timestamp on the versions it has created to ts-counter + 1 
b. Ti increments ts-counter by 1  
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Concurrency Control 

What is a concurrency control scheme and why is it needed? 

One of the fundamental properties of a transaction is isolation. When several transactions execute 
concurrently in the database, the isolation property may no longer be preserved. To ensure this, the system 
must control the interaction among the concurrent transactions and this control is achieved through one of 
the variety of mechanisms called concurrency-control schemes. 

The concurrency-control schemes are based on the serializability property. That is, all the schemes 
ensure that the schedules are serializable schedules. 

Lock-Based Protocols 

One way to ensure serializability is to require that data items be accessed in a mutually exclusive 
manner; that is, while one transaction is accessing a data item, no other transaction can modify that data 
item. 

The most common method used to implement this requirement is to allow a transaction to access a data 
item only if it is currently holding a lock on that item. 

Locks 

A lock is a mechanism to control concurrent access to a data item. 

Locking Modes 

Data items can be locked in two modes: 

1. Shared (S) Mode – data item can only be read. If a transaction Ti has obtained a shared-mode lock 
on item Q, then Ti can read, but cannot write Q. S-lock is requested using lock-S instruction. 

2. Exclusive (X) Mode – data item can be both read and written. If a transaction Ti has obtained an 
exclusive-mode lock on item Q, then Ti can both read and write Q. X-lock is requested using lock-X 
instruction. 

How Locks Work 

� A lock on a data item can be granted to a transaction if: 

1. No other transaction is holding a lock on it. 
2. A transaction is holding an S-lock and the requesting transaction is requesting for an S-lock. 

� A transaction must hold a lock on a data item as long as it accesses that item. 

Problem with this: For a transaction to unlock a data item immediately after its final access of 
that data item is not always desirable, since serializability may not be ensured. 

Illustration of this problem: 

 

T1 T2 
lock-X(B) 

read(B) 

B := B – 50 
write(B) 

unlock(B) 
 

 

 

 

 

 

 

lock-X(A) 

read(A) 

A := A + 50 
write(A) 

unlock(A) 

 

 

 

 

 

lock-S(A) 

read(A) 

unlock(A) 

lock-S(B) 

read(B) 

unlock(B) 

display(A+B) 

 

1. Let, B = 200 

2. Now, B = 150 

3. Let, A = 100 

4. B = 150 

5. A + B = 250 

6. A = 100 

7. Now, A = 150 After T1 completes, A + B is 300. However, 

T2 has already displayed the value 250!!! 
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Solution of this problem: 

Delay unlocking to the end of the transaction. 

� Problems with locking 

1. Deadlock 

Illustration of deadlock: 

 

Solution: Coming later in this chapter. 

2. Starvation 

A transaction may be waiting for an X-lock on an item, while a sequence of other 
transactions request and are granted an S-lock on the same item. Thus the first transaction 
never makes progress and is said to be starved. 

Solution: 

When a transaction Ti requests a lock on a data item Q in a particular mode M, the lock can 
be granted provided that: 

1. There is no other transaction holding a lock on Q in a mode that conflicts2 with M. 
2. There is no other transaction that is waiting for a lock on Q and that made its lock request 

before Ti. 

The Two-Phase Locking Protocol 

This protocol requires that each transaction issue lock and unlock requests in two phases: 

1. Growing phase 
• Transaction may obtain locks 
• Transaction may not release any lock 

2. Shrinking phase 
• Transaction may release locks 
• Transaction may not obtain any new locks 

Initially, a transaction is in the growing phase. The transaction acquires locks as needed. 
Once the transaction releases a lock, it enters the shrinking phase, and it can issue no more 
lock requests. 

Example: 

Transaction T3 on the right side is two-phase. 

Note that the unlock instructions do not need to appear at the end of the transaction. For example, in T3, 
we could move the unlock(B) instruction to just after the lock-X(A) instruction. 
                                                           
2 In the lock-compatibility matrix below, all the modes other than the S-S are conflicting: 

 S X 
S true false 
X false false 

 

T1 T2 
lock-X(B) 

read(B) 

B := B – 50 
write(B) 

 

 

 

lock-X(A) 

 

 

 

 

lock-S(A) 

read(A) 

lock-S(B) 

 

1. T1 locks B 

2. T2 locks A 

3. T2 requests to lock B. 

However, as T1 didn’t unlock 

B, T2 is made to wait. 

4. T1 requests to lock A. 

However, as T2 didn’t 

unlock A, T1 is made 

to wait. DEADLOCK!!! 

T3 
lock-X(B) 

read(B) 

B := B – 50 
write(B) 

 

lock-X(A) 

read(A) 

A := A + 50 
write(A) 

 

unlock(B) 

unlock(A) 
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Problems with two-phase locking protocol: 

1. Deadlock is not ensured. 

The transactions T1 and T2 are in two-phase, but not deadlock-free as illustrated in the previous 
illustration of deadlock. 

Solution: see deadlock handling later in this chapter. 

2. Cascading rollback may occur. 

Illustration of this problem: 

 

Solution: 

The two-phase locking protocol may be modified in any of the following ways: 

1. Strict two-phase locking protocol: requires not only that locking be two-phase, but also that all 
exclusive-mode locks taken by a transaction be held until that transaction commits. 

This requirement ensures that any data written by an uncommitted transaction are locked in 
exclusive mode until the transaction commits, preventing any other transaction from reading the 
data. 

2. Rigorous two-phase locking protocol: requires not only that locking be two-phase, but also that 
all locks taken by a transaction be held until that transaction commits. 

3. Concurrency might become less. 

Illustration of this problem: 

 

Solution: 

Allow lock conversion. 

� We shall provide a mechanism for upgrading a shared lock to an exclusive lock, and 
downgrading an exclusive lock to a shared lock. 

� However, upgrading can take place only in the growing phase, whereas downgrading can take 
place only in the shrinking phase. 

T8 T9 
read(a1) 

read(a2) 

… 

read(an) 

write(a1) 

 

 

 

 

 

read(a1) 

read(a2) 

display(a1+a2) 

 

AsT8 is writing a1, so it must X-lock a1 before 
read(a1) in two-phase locking. 
 

However, if T8 could initially lock a1 in shared 
mode and then could later change the lock to 

exclusive mode, we could get more 

concurrency, since T8 and T9 could access a1 
and a2 simultaneously. 

T5 T6 T7 
lock-X(A) 

read(A) 

lock-S(B) 

read(B) 

write(A) 

unlock(A) 

 

 

 

 

 

 

lock-X(A) 

read(A) 

write(A) 

unlock(A) 

 

 

 

 

 

 

 

 

 

 

lock-X(A) 

read(A) 

 

Failure ofT5 after this step leads 

to cascading rollback of T6 and T7. 
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� Note that a transaction attempting to upgrade a lock on an item Q may be forced to wait. This 
enforced wait occurs if Q is currently locked by another transaction in shared mode. 

� Further, if exclusive locks are held until the end of the transaction, the schedules are cascadeless. 

Example: 

 

Use of two-phase locking protocol: 

Strict two-phase locking and rigorous two-phase locking (with lock conversions) are used extensively in 
commercial database systems. 

Graph-Based Protocols 

If we have prior knowledge about the order in which the database items will be accessed, it is possible to 
construct locking protocols that are not two phase but ensures conflict serializability. 

To acquire such prior knowledge, we impose a partial ordering → on the set D = {d1, d2, .., dh} of all 
data items. If di → dj, then any transaction accessing both di and dj must access di before accessing dj. This 
partial ordering may be the result of either the logical or the physical organization of the data, or it may be 
imposed solely for the purpose of concurrency control. 

The Tree Protocol 

In the tree protocol, the only lock instruction allowed is lock-X. Each transaction Ti can lock a data item 
at most once, and must observe the following rules: 

1. The first lock by Ti may be on any data item. 
2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is currently locked by Ti. 
3. Data items may be unlocked at any time. 
4. A data item that has been locked and unlocked by Ti cannot subsequently be relocked by Ti. 

Example: 

 

T10 T11 T12 T13 
lock-X(B) 

 

 

 

lock-X(E) 

lock-X(D) 

unlock(B) 

unlock(E) 

 

 

 

lock-X(G) 

unlock(D) 

 

 

 

 

 

 

unlock(G) 

 

lock-X(D) 

lock-X(H) 

unlock(D) 

 

 

 

 

 

 

unlock(H) 

 

 

 

 

 

 

 

 

 

lock-X(B) 

lock-X(E) 

 

 

 

 

 

 

 

unlock(E) 

unlock(B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lock-X(D) 

lock-X(H) 

unlock(D) 

unlock(H) 

 

 

 

T8 T9 
lock-S(a1) 

 

lock-S(a2) 

 

lock-S(a3) 

lock-S(a4) 

 

 

lock-S(an) 

upgrade(a1) 

 

lock-S(a1) 

 

lock-S(a2) 

 

 

unlock(a1) 

unlock(a2) 
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Problem with Tree Protocol: 

The tree protocol does not ensure recoverability and cascadelessness. 

Solution: 

To ensure recoverability and cascadelessness, the protocol can be modified to not permit release of 
exclusive locks until the end of the transaction. 

Problem with this solution: 

Holding exclusive locks until the end of the transaction reduces concurrency. 

Alternate solution improving concurrency, but ensuring only recoverability: 

For each data item with an uncommitted write, we record which transaction performed the last write to 
the data item. Whenever a transaction Ti performs a read of an uncommitted data item, we record a commit 
dependency of Ti on the transaction that performed the last write to the data item. Transaction Ti is then not 
permitted to commit until the commit of all transactions on which it has a commit dependency. If any of 
these transactions aborts, Ti must also be aborted. 

Advantages (Over Two-Phase Locking Protocol): 

1. Unlike two-phase locking, it’s deadlock-free, so no rollbacks are required. 

2. Unlocking may occur earlier which may lead to shorter waiting times and to an increase in 
concurrency. 

Disadvantages: 

1. In some cases, a transaction may have to lock data items that it does not access. This additional 
locking results in increased locking overhead, the possibility of additional waiting time, and a 
potential decrease in concurrency. 

For example, a transaction that needs to access data items A and J in the database graph depicted 
previously must lock not only A and J, but also data items B, D and H. 

2. Without prior knowledge of what data items will need to be locked, transactions will have to lock the 
root of the tree, and that can reduce concurrency greatly. 

Comments: 

Schedules not possible under two-phase locking are possible under tree protocol, and vice versa. 

Timestamp-Based Protocols 

Another method for determining the serializability order is to select an ordering among transactions in 
advance using timestamp-ordering. 

Timestamps 

Each transaction is assigned a timestamp when it enters the system. 

If an old transaction Ti has timestamp TS(Ti), a new transaction Tj is assigned timestamp TS(Tj) such that 
TS(Ti) < TS(Tj). 

How a timestamp can be generated: 

1. Value of system clock – A transaction’s timestamp is equal to the value of the clock when it enters 
the system. 

2. Logical counter – It is incremented after a new timestamp has been assigned. A transaction’s 
timestamp is equal to the value of the counter when it enters the system. 

Basic Concept 

The timestamps determine the serializability order. Thus, if TS(Ti) < TS(Tj), then the system must ensure 
that the produced schedule is equivalent to a serial schedule in which Ti appears before Tj. 
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To implement this, the protocol maintains for each data Q two timestamp values: 

1. W-timestamp(Q) – largest timestamp of any transaction that executed write(Q) successfully. 
2. R-timestamp(Q) – largest timestamp of any transaction that executed read(Q) successfully. 

These timestamps are updated whenever a new read(Q) or write(Q) instructions are executed. 

The Timestamp Ordering Protocol 

The timestamp ordering protocol ensures that any conflicting read and write  operations are executed in 
timestamp order. 

1. Suppose a transaction Ti issues a read(Q). 

a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was already overwritten. 
Hence, the read operation is rejected, and Ti is rolled back. 

 

b. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set 
to max(R-timestamp(Q), TS(Ti)). 

 

2. Suppose that transaction Ti issues write (Q). 

a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously, 
and the system assumed that that value would never be produced. 

Hence, the write  operation is rejected, and Ti is rolled back. 

 

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. 
Hence, this write  operation is rejected, and Ti is rolled back. 

 
c. Otherwise, the write  operation is executed, and W-timestamp(Q) is set to TS(Ti). 

Ti Ti + 1 
Read(Q) 

… 

write(Q) 

… 

write(Q) 

… 

 

Rollbacked 

 

Rejected 

 
Ti  is attempting to write an obsolete value of Q 
 

If TS(Ti) < W-timestamp(Q) then 

3. Reject write(Q) 

4. Rollback (Ti) 

Ti Ti + 1 
 

write(Q) 

read(Q) 

 

Rollbacked 

 
Rejected 

 

Ti + 1 needed value of Q and assumed that Q would never be produced 
 

If TS(Ti) < R-timestamp(Q) then 

1. Reject write(Q) 

2. Rollback (Ti) 

Case 1: 

TS(Ti) = W-timestamp(Q) 

∴ R-timestamp(Q) = TS(Ti) 

Ti 
… 

write(Q) 

… 

read(Q) 

 

Ti - 1 Ti 
write(Q)  

read(Q) 

 

Case 2: 

TS(Ti) > W-timestamp(Q) 

∴ R-timestamp(Q) = TS(Ti) 

Ti - 1 Ti Ti + 1 
 

write(Q) 

 

 

read(Q) 

read(Q) 

 

Case 3: 

TS(Ti) > W-timestamp(Q) 

∴ R-timestamp(Q) = R-timestamp(Q) 

Ti Ti + 1 
 

read(Q) 

write(Q) 

 

Rollbacked 

 
Rejected 

 

Ti would read a value of Q that’s already overwritten 
 

If TS(Ti) < W-timestamp(Q) then 

1. Reject read(Q) 

2. Rollback (Ti) 
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If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance of either a read 
or write operation, the system assigns it a new timestamp and restarts it. 

Advantages: 

1. Ensures conflict serializability. 
2. Ensures freedom from deadlock as no transaction ever waits. 

Disadvantages: 

1. Possibility of starvation of long transactions if a sequence of conflicting short transactions causes 
repeated restarting of the long transaction. 

Solution: 

If a transaction is found to be getting restarted repeatedly, conflicting transactions need to be 
temporarily blocked to enable the transaction to finish. 

2. Generates schedules that are not recoverable and may require cascading rollbacks. 

Possible Solutions: 

1. Ensuring both recoverability and cascadelessness 

A transaction is structured such that its writes are all performed at the end of its processing. 

All writes of a transaction form an atomic action; no transaction may execute while a 
transaction is being written. 

A transaction that aborts is restarted with a new timestamp. 

2. Ensuring both recoverability and cascadelessness 

Limited form of locking; whereby reads of uncommitted items are postponed until the 
transaction that updated the item commits. 

3. Ensuring only recoverability 

Use commit dependencies to ensure recoverability. 

Thomas’ Write Rule 

Modified version of the timestamp-ordering protocol in which obsolete write  operations may be ignored 
under certain circumstances, thus allowing greater potential concurrency. 

The timestamp ordering protocol requires that Ti be rolled back if Ti issues write(Q) 
and TS(Ti) <  W-timestamp(Q). However, in Thomas’ Write Rule, in those cases where 
TS(Ti) ≥ R-timestamp(Q), we ignore the obsolete write. 

Thomas' Write Rule allows greater potential concurrency. This change makes it possible to generate 
some serializable schedules that are not possible under the other protocols. 

Validation-Based Protocols 

In cases where a majority of transactions are read-only transactions, the rate of conflicts among 
transactions may be low. It may be better to use a scheme that imposes less overhead. 

Phases of a Transaction 

A difficulty in reducing the overhead is to know in advance which transactions will be involved in a 
conflict. To gain this knowledge, a scheme for monitoring the system is needed. 

We assume that execution of transaction Ti is done in two or three different phases in its lifetime, 
depending on whether it is a read-only or an update transaction. The phases are, in order: 

1. Read and execution phase: The Transaction Ti reads the value of various data items and store them 
in variables local to Ti. It performs all write operations on temporary local variables, without updates 
of the actual database. 

Ti Ti + 1 
read(Q) 

 

write(Q) 

 

write(Q) 
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2. Validation phase: Transaction Ti performs a validation test to determine if local variables can be 
written to database without violating serializability. 

3. Write phase: If Ti is validated, the updates are applied to the actual database; otherwise, Ti is rolled 
back. 

The Validation Test 

To perform the validation test, it is needed to know when the various phases of transaction Ti took place. 
It is associated with 3 timestamps: 

1. Start(Ti): the time when Ti started its execution. 
2. Validation(Ti): the time when Ti entered its validation phase. 
3. Finish(Ti): the time when Ti finished its write phase. 

Serializability order is determined by timestamp given at validation time to increase concurrency. Thus, 
TS(Ti) = Validation(Ti). 

The validation test for transaction Tj requires that, for all Ti with TS(Ti) < TS(Tj) either one of the 
following conditions holds: 

1. finish(Ti) < start(Tj). 

Since Ti completes its execution before Tj started, the serializability order is indeed maintained. 

2. start(Tj) < finish(Ti) < validation(Tj). That is, the set of data items written by Ti does not intersect 
with the set of data items read by Tj, and Ti completes its write phase before Tj starts its validation 
phase. 

This condition ensures that the writes of Ti and Tj do not overlap. Since the writes of Ti do not affect 
the read of Tj, and since Tj cannot affect the read of Ti, the serializability order is indeed maintained. 

Example: 

 

Advantage: 

Automatically guards against cascading rollbacks, since the actual writes take place only after the 
transaction issuing the write has committed. 

Problem: 

Possibility of starvation of long transactions, due to a sequence of conflicting short transactions that 
cause repeated restarts of the long transaction. 

Solution: Conflicting transactions must be temporarily blocked to enable the long transaction to finish. 

Comments: 

The validation scheme is also called as optimistic concurrency control since transaction executes fully 
in the hope that all will go well during validation. In contrast, locking and timestamp ordering are 
pessimistic in that they force a wait or a rollback whenever a conflict is detected, even though there is a 
chance that the schedule may be conflict serializable. 

 

T14 T15 
read(B) 

 

 

 

 

read(A) 

<validate> 

display(A + B) 

 

read(B) 

B := B – 50 
read(A) 

A := A + 50 
 

 

 

<validate> 

write(B) 

write(A) 
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Multiple Granularity 

The Problem 

In the concurrency-control schemes described thus far, we have used each individual data item as the 
unit on which synchronization is performed. There are circumstances, however, where it would be 
advantageous to group several data items, and to treat them as one individual synchronization unit. 

For example, if a transaction Ti needs to access the entire database, and a locking protocol is used, then 
Ti must lock each item in the database. Clearly, executing these locks is time consuming. It would be better 
if Ti could issue a single lock request to lock the entire database. On the other hand, if transaction Tj  needs 
to access only a few data items, it should not be required to lock the entire database, since otherwise 
concurrency is lost. 

Solution 

What is needed is a mechanism to allow the system to define multiple levels of granularity. We can 
make one by allowing data items to be of various sizes and defining a hierarchy of data granularities, where 
the small granularities are nested within larger ones. Such a hierarchy can be represented graphically as a 
tree. 

Difference between the Multiple Granularity tree and the tree in Tree Protocol 

A nonleaf node of the multiple-granularity tree represents the data associated with its descendants. In the 
tree protocol, each node is an independent data item. 

Illustration of the Protocol 

Locking Nodes 

-  Each node in the tree can be locked 
individually. 

- There are two lock modes – shared 
and exclusive. 

- When a transaction locks a node, in 
either shared or exclusive mode, the 
transaction also has implicitly locked all the descendants of that node in the same lock mode. 

For example, if transaction Ti gets an explicit lock on file Fb of the above figure in exclusive mode, 
then it has an implicit lock in exclusive mode all the records belonging to that file. It does not need to 
lock the individual records of Fb explicitly. 

Problem 1: How the system would determine whether a transaction can lock a node? 

Suppose that transaction Tj wishes to lock record rb6 of file Fb. Since Ti has locked Fb explicitly, it 
follows that rb6 is also locked (implicitly). But, when Tj issues a lock request for rb6, rb6 is not explicitly 
locked! How does the system determine whether Tj can lock rb6? 

Solution to Problem 1 

Tj must traverse the tree from the root to record rb6. If any node in that path is locked in an incompatible 
mode, then Tj must be delayed. 

Problem 2: How does the system determine if the root node can be locked? 

Suppose now that transaction Tk wishes to lock the entire database. To do so, it simply must lock the root 
of the hierarchy. Note, however, that Tk should not succeed in locking the root node, since Ti is currently 
holding a lock on part of the tree (specifically, on file Fb). But how does the system determine if the root 
node can be locked? 

A Possible Solution to Problem 2 

Tk should search the entire tree. 
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Problem with this solution: This solution defeats the whole purpose of the multiple-granularity locking 
scheme. 

More Efficient Solution to Problem 2 

Introduce a new class of lock modes, called intention lock modes. 

- If a node is locked in an intention mode, explicit locking is being done at a lower level of the tree 
(that is, at a finer granularity). 

- Intention locks are put on all the ancestors of a node before that node is locked explicitly. 

- A transaction wishing to lock a node — say, Q — must traverse a path in the tree from the root to Q. 
While traversing the tree, the transaction locks the various nodes in an intention mode. 

Thus, a transaction does not need to search the entire tree to determine whether it can lock a node 
successfully. 

Different Types of Intention Mode Locks 

1. Intention-Shared (IS) Mode: If a node is locked in intention-shared (IS) mode, explicit locking is 
being done at a lower level of the tree, but with only shared-mode locks. 

2. Intention-Exclusive (IX) Mode: If a node is locked in intention-exclusive (IX) mode, then explicit 
locking is being done at a lower level, with exclusive-mode or shared-mode locks. 

3. Shared and Intention-Exclusive (SIX) mode: If a node is locked in shared and intention-exclusive 
(SIX) mode, the subtree rooted by that node is locked explicitly in shared mode, and that explicit 
locking is being done at a lower level with exclusive-mode locks. 

Compatibility Function for the Various Lock Modes 

 

The Multiple-Granularity Locking Protocol 

Each transaction Ti can lock a node Q by following these rules: 

1. It must observe the lock-compatibility function of various lock modes. 

2. It must lock the root of the tree first, and can lock it in any mode. 

3. It can lock a node Q in S or IS mode only if it currently has the parent of Q locked in either IX or 
IS mode. 

4. It can lock a node Q in X, SIX, or IX mode only if it currently has the parent of Q locked in 
either IX or SIX mode. 

5. It can lock a node only if it has not previously unlocked any node (that is, Ti is two phase). 

6. It can unlock a node Q only if it currently has none of the children of Q locked. 

Observe that the multiple-granularity protocol requires that locks be acquired in top-down (root-to-leaf) 
order, whereas locks must be released in bottom-up (leaf-to-root) order. 

Examples 

Consider the following four transactions. 

Note that transactions T16, T18, and T19 can access the database concurrently. Transaction T17 can execute 
concurrently with T16, but not with either T20 or T21. 



 

•   

•   

•   

•   

 

Advantages 

1. Ensures serializability 
2. Enhances concurrency and reduces lock overhead.
3. Particularly useful in applications that include a mix of

a. Short transactions that access only a few data items
b. Long transactions that 

Disadvantage 

Deadlock is possible in the protocol that we have, as it is in the two

T19 
read(DB) 

T18 
read(Fa) 

T17 
write(ra1) 

T16 
read(ra2) 
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Enhances concurrency and reduces lock overhead. 
applications that include a mix of 

Short transactions that access only a few data items 
 produce reports from an entire file or set of files

Deadlock is possible in the protocol that we have, as it is in the two-phase locking protocol.

 

 

 

 

produce reports from an entire file or set of files 

phase locking protocol. 
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However, there are techniques to reduce deadlock frequency in the multiple-granularity protocol, and 
also to eliminate deadlock entirely. 

 

Deadlock Handling 

A system is said to be in a deadlock state if there exists a set of transactions such that every transaction 
in the set is waiting for another transaction in the set. More precisely, there exists a set of waiting 
transactions {T0 , T1 , . . ., Tn} such that T0 is waiting for a data item that T1 holds, and T1 is waiting for a 
data item that T2 holds, and …, and Tn-1 is waiting for a data item that Tn holds, and Tn is waiting for a data 
item that T0 holds. None of the transactions can make progress in such a situation. 

Principal Methods for Dealing with Deadlock Problem 

1. We can use a deadlock prevention protocol to ensure that the system will never enter a deadlock 
state. 

2. Alternatively, we can allow the system to enter a deadlock state, and then try to recover by using a 
deadlock detection and deadlock recovery scheme. 

As we shall see, both methods may result in transaction rollback. 

Prevention is commonly used if the probability that the system would enter a deadlock state is relatively 
high; otherwise, detection and recovery are more efficient. 

Deadlock Prevention 

There are two approaches to deadlock prevention: 

1. Ensuring that no cycle waits can occur by ordering the requests for locks, or requiring all locks 
to be acquired together. 

Different Schemes for this approach: 

1. Each transaction locks all its data items before it begins execution. Moreover, either all are 
locked in one step or none are locked. 

Disadvantages: 

1. It is often hard to predict, before the transaction begins, what data items need to be locked. 
2. Data-item utilization may be very low, since many of the data items may be locked but 

unused for a long time. 

2. Impose an ordering of all data items, and a transaction is required to lock data items only in a 
sequence consistent with the ordering. 

We have seen one such scheme in the tree protocol, which uses a partial ordering of data items. 

3. A variation of the above approach is to use a total order of data items, in conjunction with two-
phase locking. Once a transaction has locked a particular item, it cannot request locks on items 
that precede that item in the ordering. 

This scheme is easy to implement, as long as the set of data items accessed by a transaction is 
known when the transaction starts execution. 

2. Using preemption and transaction rollbacks. 

- In preemption, when a transaction T2 requests a lock that transaction T1 holds, the lock granted to 
T1 may be preempted by rolling back of T1, and granting of the lock to T2. 

- To control the preemption, we assign a unique timestamp to each transaction. The system uses 
these timestamps only to decide whether a transaction should wait or roll back. 

- If a transaction is rolled back, it retains its old timestamp when restarted. 

- Locking is still used for concurrency control. 
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Deadlock Prevention Schemes using Timestamps 

1. Wait-Die Scheme [Non-Preemptive Technique] 

When transaction Ti requests a data item currently held by Tj, Ti is allowed to wait only if it has a 
timestamp smaller than that of Tj (i.e. Ti is older than Tj). Otherwise, Ti is rolled back (dies). 

For example, suppose that transactions T22, T23 and T24 have timestamps 5, 10 and 15 
respectively. If T22 requests a data item held by T23, then T22 will wait. If T24 requests a data item 
held by T23, then T24 will be rolled back. 

2. Wound-Wait Scheme [Preemptive Technique] 

This scheme is a counterpart to the wait-die scheme. 

When transaction Ti requests a data item currently held by Tj, Ti is allowed to wait only if it has a 
timestamp larger than that of Tj (i.e. Ti is younger than Tj). Otherwise, Tj is rolled back (Tj is 
wounded by Ti). 

Returning to our example, with transactions T22, T23 and T24, if T22 requests a data item held by 
T23, then the data item will be preempted from T23, and T23 will be rolled back. If T24 requests a 
data item held by T23, then T24 will wait. 

 

Proof That Both Wait-Die and Wound-Wait Schemes Avoid Starvation 

At any time, there is a transaction with the smallest timestamp. This transaction cannot be 
required to roll back in either scheme. Since timestamps always increase, and since transactions are 
not assigned new timestamps when they are rolled back, a transaction that is rolled back repeatedly 
will eventually have the smallest timestamp, at which point it will not be rolled back again. 

Differences Between Wait-Die and Wound-Wait Schemes 

1. In the wait–die scheme, an older transaction must wait for a younger one to release its data item. 
Thus, the older the transaction gets, the more it tends to wait. 

By contrast, in the wound–wait scheme, an older transaction never waits for a younger 
transaction. 

2. In the wait–die scheme, if a transaction Ti dies and is rolled back because it requested a data item 
held by transaction Tj, then Ti may reissue the same sequence of requests when it is restarted. If 
the data item is still held by Tj, then Ti will die again. Thus, Ti may die several times before 
acquiring the needed data item. 

Contrast this series of events with what happens in the wound–wait scheme. Transaction Ti is 
wounded and rolled back because Tj requested a data item that it holds. When Ti is restarted and 
requests the data item now being held by Tj , Ti waits. Thus, there may be fewer rollbacks in the 
wound–wait scheme. 

Major Problem with Both of the Schemes: Unnecessary rollbacks may occur. 

Timeout-Based Scheme 

- In this approach, a transaction that has requested a lock waits for at most a specified amount of time. 
If the lock has not been granted within that time, the transaction is said to time out, and it rolls itself 
back and restarts. 

- If there was in fact a deadlock, one or more transactions involved in the deadlock will time out and 
roll back, allowing the others to proceed. 

T22 T23 T24 
Request 

Wait 

Request 

Rollback 

T22 T23 T24 
Request 

Rollback 

Request 

Wait 

Wait -Die Scheme Wound-Wait Scheme 
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- This scheme falls somewhere between deadlock prevention, where a deadlock will never occur, and 
deadlock detection and recovery. 

Advantages 

1. Particularly easy to implement 
2. Works well if transactions are short and if long waits are likely to be due to deadlocks.  

Disadvantages 

1. In general, it is hard to decide how long a transaction must wait before timing out. Too long a wait 
results in unnecessary delays once a deadlock has occurred. Too short a wait results in transaction 
rollback even when there is no deadlock, leading to wasted resources. 

2. Starvation is also a possibility with this scheme. 

Deadlock Detection 

The Wait-For Graph 

Deadlocks can be described precisely in terms of a directed graph called a wait-for graph. 

This graph consists of a pair G = (V, E), where 

V is a set of vertices which consists of all the transactions in the system 

E is a set of edges where each element is an ordered pair Ti → Tj. 

If Ti → Tj is in E, then there is a directed edge from transaction Ti to Tj, implying that transaction Ti is 
waiting for transaction Tj to release a data item that it needs. 

When transaction Ti requests a data item currently being held by transaction Tj, then the edge Ti → Tj is 
inserted in the wait-for graph. This edge is removed only when transaction Tj is no longer holding a data 
item needed by transaction Ti. 

A deadlock exists in the system if and only if the wait-for graph contains a cycle. Each transaction 
involved in the cycle is said to be deadlocked. To detect deadlocks, the system needs to maintain the wait-
for graph, and periodically to invoke an algorithm that searches for a cycle in the graph. 

Example 

 

When Should the Detection Algorithm be Invoked? 

The answer depends on two factors: 

1. How often does a deadlock occur? 
2. How many transactions will be affected by the deadlock? 

If  deadlocks  occur  frequently,  then  the  detection  algorithm  should  be  invoked more frequently 
than usual. Data items allocated to deadlocked transactions will be unavailable to other transactions until the 
deadlock can be broken. In addition, the number of cycles in the graph may also grow. In the worst case, we 
would invoke the detection algorithm every time a request for allocation could not be granted immediately. 

Deadlock Recovery 

When a detection algorithm determines that a deadlock exists, the system must recover from the 
deadlock. The most common solution is to roll back one or more transactions to break the deadlock. Three 
actions need to be taken: 
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1. Selection of a Victim 

Given a set of deadlocked transactions, we must determine which transaction (or transactions) to 
roll back to break the deadlock. We should roll back those transactions that will incur the minimum 
cost. Unfortunately, the term minimum cost is not a precise one. Many factors may determine the 
cost of a rollback, including 

a. How long the transaction has computed, and how much longer the transaction will compute 
before it completes its designated task. 

b. How many data items the transaction has used. 
c. How many more data items the transaction needs for it to complete.  
d. How many transactions will be involved in the rollback. 

2. Rollback 

Once we have decided that a particular transaction must be rolled back, we must determine how 
far this transaction should be rolled back. 

1. Total Rollback: Abort transaction and then restart it. 
2. Partial Rollback:  Roll back the transaction only as far as necessary to break the deadlock. 

3. Starvation 

In a system where the selection of victims is based primarily on cost factors, it may happen that 
the same transaction is always picked as a victim. As a result, this transaction never completes its 
designated task, thus there is starvation. We must ensure that transaction can be picked as a victim 
only a (small) finite number of times. The most common solution is to include the number of 
rollbacks in the cost factor. 

 

 

 

 

 

 

 

 

 

 


