DBMS — I

Study Guide

PostgreSQL

AN

P 7 Microsoft:

.=y Visual FoxPro

W

MySQL.
SQLiteZ é;ue SYBASE

851 server 12 | DB2.

D M) Microsoft Office
L. Access

o F- h- d Innovative RDBMS software
lre lr that's going where you're going

Prepared By

Sharafat Ibn Mollah Mosharraf

CSE, DU
12t Batch (2005-2006)

CHAPTER 9: OBJECT-BASED DATABASES
CHAPTER 15: TRANSACTIONS.........

Table of Contents

CHAPTER 16: CONCURRENCY CONTROL

Chapter 9
Object-Based Databases

Terms and Definitions
Object-Relational Data Model

The object-relational data modak an extension of the relational data model wipobvides a richer
type system including complex data types and olggentation.

Object-Relational Database Systems

Object-relational database system® database systems based on the object-retatidel and provide
a convenient migration path for users of relatiashbases who wish to use object-oriented features

Persistent Programming Languages

Persistent Programming Languagesfers to extensions of existing programming latgs to add
persistence and other database features usin@tive type system of the programming language.

Object-Oriented Database Systems

Object-oriented database systerafers to database systems that support an atjiecited type system
and allow direct access to data from an objectate programming language using the native typteBys
of the language.

SQL Complex Data Types Syntax with Comparison to OOP Language Syntax

Structured Types

SQL: User-Defined Types
ERD: Composite Attributes
OOP: Class

ERD SQL OOP (Java)
@ @ create type Nameas (final class Name{
firstnamevarchar(20), Stringfirstname
lastnamevarchar(20) Stringlastname
) final }

create type Addressas (class Addresq
streetvarchar(20), Stringstreet
city varchar(20), Stringcity;
zipcodevarchar(9) Stringzipcode
) not final }

The final specification forNameindicates that we cannot create subtypesntone whereas the&ot
final specification folAddresandicates that we can create subtypeadufress

Creating a Table from These Types

1. By directly using these types in the table declarain:

3

create tablecustomeias (
nameName
address Address,
dateOfBirthdate

)

2. By declaring a type consisting of these types antién declaring a table of this new type:
create typeCustomerTypas (
nameName

address Address,

dateOfBirthdate
) not final

create tablecustomeiof CustomerType
Directly Creating a Table Using Unnamed Row Types Instead of Creating Intermediate Types

create tablecustomer_(
namerow (firstnamevarchar(20),

lastnamevarchar(20)),
addresgow (streetvarchar(20),
city varchar(20),
zipcodevarchar(9)),
dateOfBirthdate
)
Methods
SQL OOP (Java)
create typeCustomerTypas | class CustomerTypé
nameName Namename
address Address, Addressaddress
dateOfBirthdate DatedateOfBirth
) not final
method ageOnDate(onDatdate) int ageOnDaté@ateonDate {
returns interval year returnonDate -this.dateOfBirth

}

create instance methocdigeOnDate(onDatdate) | }
returns interval year
for CustomerType

begin
return onDate —self.dateOfBirth

end

The for clause indicates which type this method is forjlevthe keywordinstance indicates that this
method executes on an instance of @ustomerTypdype. The variableself refers to the instance of
CustomerTypen which the method is invoked.

Method Invocation

create tablecustomeiof CustomerType

selectname.lastnameageOnDatefurrent_date)
from customer

Constructor Functions

* Used to create values of structured types.

» A function with the same name as a structured tgpe constructor function for the structured
type.
* Every structured type has a default constructoe ~constructor with no arguments.

e Constructors can be overloaded.

create function Name(firstnamevarchar(20), lastnamevarchar(20))
returns Name
begin
set selffirstname = firsthnamg
set selflastname = lasthame
end

Creating a Tuple Using Constructor

insert into customer

values(
new Namé'Johrt, 'SmitH),
new Addres$20 Main Stre€f 'New York '110012),
date '1960-8-22

Creating a Tuple without Using Constructor

insert into customer

values(
("John, 'Smith),
('20 Main Stre€t 'New York '11001),
'1960-8-22

)

Type Inheritance

ERD

Person

ISA
department department

Student Teacher

SQL

create typePerson(

namevarchar(20),
addressvarchar(20)

)

create typeStudentunder Person(
degreevarchar(20),
departmentarchar(20)

)

create typeTeacherunder Person(
salaryinteger,

departmentarchar(20)

)

OOP (Java)

classPersor{
Stringname
Stringaddress

}

classStudentextendsPerson{
Stringdegree
Stringdepartment

}

classTeacherextendsPerson{
int salary;
Stringdepartmernt

}

Multiple Inheritance

create typeTeachingAssistantinder Student, Teacher

However, the attributelepartmentis defined separately iStudentand Teacherand thus conflict in
TeachingAssistaniTo avoid a conflict between the two occurrendedepartmentwe can rename them by
using amasclause:

create typeTeachingAssistant
under Studentwith (departmentasstudent_dept),
Teachemwith (departmentsteacher_dept)

Notes

* Multiple inheritance is not supported in currentlS&@andard (up to SQL:1999 and SQL:2003).
* Subtypes can override methods of the supertype.
» Allowing creation of subtypes from types can betoalted by the keyword&nal andnot final.

Table Inheritance

create tablepeopleof Person
create tablestudentof Studenunder people
create tableteachersof Teachemunder people

6

Notes

* Types of the subtables must be subtypes of thedf/iee parent table. Therefore, every attribute
present ipeopleis also present in the subtables.

* When we declarstudentsandteachersas subtables qfeople every tuple present studentsor
teachersbecomes also implicitly present preople Thus, if a query uses the talpleople it will
find not only tuples directly inserted into thabli®, but also tuples inserted into its subtables,
namelystudentsandteachers However, only those attributes that are presemebplecan be
accessed.

* SQL permits us to find tuples that are in peoplerat in its subtables by usingrily peoplé in
place of people in a query. Toaly keyword can also be used in delete and updatenségts.
Without theonly keyword, a delete statement on a supertable, asjgbople also deletes tuples
that were originally inserted in subtables.

» Multiple inheritance of tables is not supportedS®L. However, conceptually it is possible:
create tableteaching_assistantsf TeachingAssistaninder studentsteachers

As a result of the declaration, every tuple presenthe teaching_assistantsable is also
implicitly present in theéeachersand in thestudentdable, and in turn in theeopletable.

Therefore, SQL subtables cannot be used to refdreseriapping specializations from the ERD.
Consistency Requirements for Subtables

There are some consistency requirements for s@staBlefore we state the constraints, we need a
definition: we say that tuples in a subtable cqroesls to tuples in a parent table if they have shime
values for all inherited attributes. Thus, corresging tuples represent the same entity.

The consistency requirements for subtables are:
1. Each tuple of the supertable can correspond taoat one tuple in each of its immediate subtables.

2. SQL has an additional constraint that all the tsiglerresponding to each-other must be derived from
one tuple (inserted into one table).

For example, without the first condition, we coutdve two tuples in students (or teachers) that
correspond to the same person. The second conditimally prevents a person from being both a tach
and a student.

Collection Types: Arrays and Multisets

* A multiset is an unordered collection where an @etmay occur multiple times. Multisets are
like sets, except that a set allows each elememtdar at most once.

» Unlike elements in a multiset, the elements of @ayeare ordered.

create typeBookas(
title varchar(20),
author_arrayvarchar(20) array[10],
pub_datedate,
publisher Publisher,
keyword_sevarchar(20) multiset

)

Creating Collection Values

We can insert a tuple into theoksrelation as follows:

7

insert into books
values(
'‘Compilers,
array['Smith,’"Jone§,
new Publishe{’'McGraw-Hill',/New York),
multiset['parsing,'analysi§)

)

Querying Collection-Valued Attributes: Nesting and Unnesting

Unnesting

The transformation of a nested relation into a favitih fewer (or no) relation-valued attributes aled

unnesting

Consider the followingpooksrelation:

title author_array | publishername, branch keyword_set
Compilers| [Smith, Jones] (McGraw-Hill, New York) | {parsing, analysis}
Networks | [Jones, Frick] (Oxford, London) {Interng¥eb}

Suppose that we want to convert the relation intsingle flat relation, with no nested relations or
structured types as attributes. We can use thewolg query to carry out the task:

selecttitle, A.author, publisher.names pub_name, publisher.braneas pub_branch, K.keyword
from booksasB, unnest(B.author_array asA(author, unnest(B.keyword_sgtasK(keyword

The variableB in thefrom clause is declared to range obeoks The variableA is declared to range

over the authors imuthor_array for the bookB, andK is declared to range over the keywords in the
keyword_sebf the bookB.

The result of the preceding query is the followiaation which is in 1NF:

title author | pub_name | pub_branch keyword
Compilers| Smith | McGraw-Hill| New York | parsing
Compilers| Jones| McGraw-Hill New York | parsing
Compilers| Smith | McGraw-Hill| New York | analysis
Compilers| Jones| McGraw-Hill New York | analysis
Networks | Jones Oxford London Internet
Networks | Frick Oxford London Internet
Networks | Jones Oxford London Web
Networks | Frick Oxford London Web

When unnesting an array, the previous query losesmation about the ordering of elements in the
array. Theunnest with ordinality clause can be used to get this information, astihted by the following

query:

selecttitle, A.author, publisher.names pub_name, publisher.branes pub_branch, K.keyword
from booksasB, unnest(B.author_array with ordinality asA(author), unnest(B.keyword_setasK(keyword

Nesting

The reverse process of transforming a 1NF relatitma nested relation is calle@sting

Nesting can be carried out by an extension of graum SQL. In the normal use of grouping in SQL, a
temporary multiset relation is (logically) creatied each group, and an aggregate function is agglrethe

temporary relation to get a single (atomic) valliee collect function returns the multiset of values instead
of creating a single value.

The above 1NF relation can be converted back todiséed relation using the following query:

selecttitle, collect(authorn asauthor_set, Publish@ub_namepub_branchaspublisher,
collect(keyword askeyword_set

from flat_books

group by title, publisher

Another approach to creating nested relations isstosubqueries in tleelectclause. An advantage of

the subquery approach is that@der by clause can be optionally used in the subqueryetete results
in a desired order, which can then be used toe@atrray.

The following query illustrates this approach; Keywordsarray andmultiset specify that an array and
multiset (respectively) are to be created fromrdwilts of the subqueries.

select title,
array (
selectauthor
from authorsasA
where A.title = B.title
order by A.position
) asauthor_array
Publisher(pub-name, pub-branca$ publisher
multiset (
selectkeyword
from keywordsasK
where K. title = B.title
) askeyword_set
from flat_booksasB

Updating Multiset Attributes

The SQL standard does not provide any way to upohatiéiset attributes except by assigning a new

value. For example, to delete a valuBom a multiset attributd, we would have to set it té\(except all
multiset[v]).

Object-ldentity and Reference Types in SQL

Please read the topic (no. 9.6, pages 376-378ed#ion) from the book thoroughly.®

Implementing O-R Features

Storing Complex Data Types

The complex data types supported by object-relatisystems can be translated to the simpler system
relational databases. The techniques for conveEiRR) model features to tables can be used, withesom

extensions, to translate object-relational datekational data at the storage level.

How Subtables can be Stored in an Efficient Manner

Subtables can be stored in an efficient mannehawit replication of all inherited fields, in one twio
ways:

» Each table stores the primary key (which may berimdd from a parent table) and the attributes
are defined locally. Inherited attributes (othearttihe primary key) do not need to be stored, and
can be derived by means of a join with the suptstddased on the primary key.

» Each table stores all inherited and locally defiadbutes. When a tuple is inserted, it is stored
only in the table in which it is inserted, and piesence is inferred in each of the supertables.
Access to all attributes of a tuple is faster, giagoin is not required.

How Arrays and Multisets can be Represented

Implementations may choose to represent array amtiset types directly, or may choose to use a
normalized representation internally. Normalizegresentations tend to take up more space and eeguir
extra join / grouping cost to collect data in aragror multiset. However, normalized representatioray

be easier to implement.

Summary of Strengths of Various Kinds of Database Systems

* Relational System:Simple data types, powerful query languages, hrghection.

* Persistent Programming Language-Based OODBsComplex data types, integration with
programming language, high performance.

* Object-Relational Systems:Complex data types, powerful query languages, prgkection.

10

Chapter 15

Transactions

Transactions

A transactionis a unit of program execution that accesses assdllply updates various data items.

For example, a transfer of funds from a checkingoant to a savings account consists of several
operations from the point of view of the databagstesn. All these operations result into a single
transaction.

The ACID Properties of Transaction

To ensure integrity of the data, we require thatdhtabase system maintain the following propedies
the transactions:

>

>

Atomicity
Either all operations of the transaction are rééidqroperly in the database or none at all.
Consistency

Execution of a transaction in isolation (that isthano other transaction executing concurrently)
preserves the consistency of the database.

Isolation

Even though multiple transactions may execute coantly, the system guarantees that, for
every pair of transaction andT,;, it appears tdl; that eitherT; finished execution befor®
started, orT; started execution aftel; finished. Thus, each transaction is unaware oéroth
transactions executing concurrently in the system.

Durability

After a transaction completes successfully, thengka it has made to the database persist, even
if there are system failures.

How Transaction Accesses Data

Transactions access data using two operations:

>

>

read(X), which transfers the data itek from the database to a local buffer belonginghte t
transaction that executed tlead operation.

write(X), which transfers the data itexnfrom the local buffer of the transaction that axed the
write back to the database.

ACID Properties Explained

Let T; be a transaction that transfers $50 from accAuntaccounB. This transaction can be defined as

Ti: read(A);
A:=A-50;
write(A);
read(B);

B =B + 50;
write(B).

Let us now consider each of the ACID requirements.

11

» Consistency

The consistency requirement here is that the suk aidB be unchanged by the execution of
the transaction.

> Atomicity

If the system crashes afterite(A) operation, then the database will not be in aister® state.
Thus, it must be ensured that either all of theajpens succeed or none of the operations occur.

> Durability

In a real database system, thdte operation does not necessarily result in the imatedipdate
of the data on the disk; therite operation may be temporarily stored in memory executed
on the disk later.

The durability property guarantees that, once resaation completes successfully, all the updates
that it carried out on the database persist, evéimere is a system failure after the transaction
completes execution.

> Isolation

Even if the consistency and atomicity properties ansured for each transaction, if several
transactions are executed concurrently, their dlpgrimmay interleave in some undesirable way
(concurrency problem), resulting in an inconsistate.

For example, after the transactidn above completes up to therite(A) operation, another
transactionT; concurrently running read& and B at this point and computes + B, it will
observe an inconsistent value.

Furthermore, iff; then performs updates édnandB based on the inconsistent values that it read,
the database may be left in an inconsistent stae after both transactions have completed.

Transaction State

A transaction must be in one of the following state

partially
committed

> Active, the initial state; the transaction stays in tr
state while it is executing.

> Partially committed, after the final statement has bee
executed.

> Faliled, after the discovery that normal execution c.
no longer proceed.

» Aborted, after the transaction has been rolled back ¢
the database restored to its state prior to the aftéhe
transaction.

failed

Two options after a transaction has been aborted: Figure: State diagram of a transaction.

1. Restart the transaction; can be done only if haredwasoftware error occurs.
2. Kill the transaction - internal logical error.

» Committed, after successful completion.

Implementation of Atomicity and Durability

The recovery-management componearita database system supports atomicity and dityaby a
variety of schemes.

12

The Shadow-Copy Scheme

» Assume that only one transaction db-pointer db-pointer

> A pointer called db_pointer alway:s

» All updates are made on shadow

active at a time. It also assumes th
the database is simply a file on disk.

points to the current consistent COL| qid copy of old copy of new copy of
of the database database database database
. (to be deleted)

copy of the database, amth _pointer (a) Before update (b) After update
is made to point to the update”
shadow copy only after the
transaction reaches partial commit and all updpsepks have been flushed to disk.

Figure: Shadow-copy technique for atomicity and durability.

In case transaction fails, old consistent copy feainto bydb_pointer can be used, and the
shadow copy can be deleted.

Drawbacks of shadow-copy scheme

1.
2.

Assumes disks do not fail

Useful for text editors, but extremely inefficiefdr large databases since executing a single
transaction requires copying thetire database.

Does not handle concurrent transactions.

Concurrent Executions

Advantages of Concurrent Executions

Multiple transactions are allowed to run concureint the system. Advantages are:

1.

Improved throughput and resource utilization: 1/0 activity and CPU activity can operate in
parallel leading to better transactitmoughput.One transaction can be using the CPU while
another is reading from or writing to the disk. Tpv®cessor and disk utilization also increase;
the processor and disk spend less time idle.

Reduced waiting time and average response time&hort transactions need not wait behind
long ones. If the transactions are operating ofertiht parts of the database, it is better to run
them concurrently, sharing the CPU cycle and dstesses among them. It also reduces the
average response timethe average time for a transaction to be coragletfter it has been
submitted.

Concept of Concurrent Executions

Overview:

First, we need to know how 8zheduldghe instructions in transactions for execution.

Next, we'll see how toserial scheduletransactions, i.e. how to schedule transactionghabd one

transaction starts executing after another onstas execution.

Then we’'ll consider concurrent execution rathemtlsarial execution of transactions. We'll see that

concurrent executions might cause thaation property to fail, i.e. the database may becomerisistent
because of concurrent executions. We'll try to foud exactly in which cases concurrent executials fa

maintain isolation. Then we’ll try to find out haw serial schedule transactions to maintain ismesio that
they might appear like they are concurrently exegutMore elaborately, we’'ll split each transactioto

pieces and then serial schedule those piecesisltatledserializability.

13

Example transactions we're going to use for explaig the concept of concurrent executions:

Let T; transfer $50 fronA to B, andT, transfer 10% of the balance froito B. These transactions can
be scheduled serially in two waysl--after T1, andT; afterT,. The definition of the transactions and these
two possible combinations of serial schedule apatied as follows:

Schedule 1 Schedule 2
Ty T, Ty T,

read(A); read(A);
A:=A-50; temp:=A*0.1,
write(A); A=A-temp
read(B); write(A);
B:=B + 50; read(B);
write(B) B :=B+temp

read(A); write(B)

temp:=A*0.1; read(A);

A:=A-temp A:=A-50;

write(A); write(A);

read(B); read(B);

B:=B +temp B :=B + 50;

write(B) write(B)

Schedule

A schedule is a sequence of instructions that §péoe chronological order in which instructions of
transactions are executed.

» A schedule for a set of transactions must cons$iall mstructions of those transactions.

» A schedule must preserve the order in which thdrioBons appear in each individual
transaction.

For example, in transactiom;, the instructionwrite(A) must appear before the instruction
read(B), in any valid schedule.
Serial Schedule

A serial schedule is a schedule which consists séquence of instructions from various transactions
where the instructions belonging to one singledaation appear together in that schedule.

Thus, for a set afl transactions, there existdifferent valid serial schedules.
The Case of Concurrent Schedules

When the database system executes several tramsaconcurrently, the corresponding schedule no
longer needs to be serial. If two transactiongan@ing concurrently, the operating system may eteeone
transaction for a little while, then perform a axttswitch, execute the second transaction faitla vhile,
then switch back to the first transaction for sdimee, and so on.

Several execution sequences are possible, sinaatimeis instructions from both transactions maw no
be interleaved.

In general, it is not possible to predict exacthwhmany instructions of a transaction will be exedu
before the CPU switches to another transactidrus, the number of possible schedules for a set of
transactions is much larger than

However, not all concurrent executions result goaect or consistent state.
For example, schedule 3 in the next figure preseis@ation, but schedule 4 doesn't.

We can ensure consistency of the database undeurtent execution by making that any schedule that
is executed has the same effect as a scheduledblat have occurred without any concurrent exeautio
That is, the schedule should, in some sense, kieatejt to aserial schedule

14

Schedule 3 Schedule 4

read(A); read(A);

A:=A-50; A:=A-50;

write(A); read(A);
read(A); temp:=A*0.1,
temp:=A*0.1; A:=A-temp
A:=A-temp write(A);
write(A); read(B);

read(B); write(A);

B :=B + 50; read(B);

write(B) B :=B + 50;
read(B); write(B)
B:=B+temp B:=B +temp
write(B) write(B)

Schedule 3 — A concurrent schedule - schedule 4 — A concurrent schedule.

equivalent to schedule 1.

Serializability

Schedule 3

T

T,

Since transactions are programs, it is computatiordifficult to determine read(A)
exactly what operations a transaction performs hod operations of various Write(A)
transactions interact. So, we ignore operationsrdtianread andwrite instructions;
and we assume that, betweeread(Q) and awrite(Q) instruction on a data iteq, a read(B)
transaction may perform an arbitrary sequence efatjpns on the copy @ thatis \yrite(B)
residing in the local buffer of the transactionr@umplified schedules consist of onl

read andwrite instructions as depicted in the figure beside.

In this section we discuss different forms of salleagquivalence; they lead to the

notions ofconflict serializabilityandview serializability

Conflict Serializability

Conflicting Instructions

We need to find out the cases when concurrent éxesufail.

read(A)
write(A)

read(B)
write(B)

Schedule 3 — Showing
only theread and

write instructions.

Let us consider a scheduin which there are two consecutive instructiohsandl; (i # j) of

transactiond; andT; respectively.

If 1; andl;, refer todifferent data item, then we can swap them without affectimg results of any

instruction in the schedule.

However, ifl; andl; refer tothe samedata itemQ, then the order of the two steps may matter. The

following four cases need to be considered:

ScheduleS ScheduleS ScheduleS ScheduleS ScheduleS
T T T T, T T, T T T, T
I; read(Q) read(Q) write(Q) write(Q)
I read(Q) write(Q) read(Q) write(Q)
ScheduleS ScheduleS ScheduleS ScheduleS
Ti T Ti T Ti Tj Ti Ti
read(Q) write(Q) read(Q) write(Q)
read(Q) read(Q) write(Q) write(Q)
Order matters? No Yes Yes Yes
Why? The same value @ | If I; comes beforg, T, Similar to the | The value obtained by the next
is read byT; andT; doesn't read the value of previous case| read(Q) instruction ofSis
regardless of the Q that is written byT;. affected, since the result of only
order. Else,T; reads the value the latterwrite instruction is
of Q that is written byT;. preserved in the database.

15

So, instructions; andl; of transactiond; andT; conflictif and only if there existsameitem Q accessed
by bothl; andl; and at least one of these instructionsusige operation orQ.

Conflict Equivalence and Conflict Serializability

Let |; and |; be consecutive instructions of a sched8lelf |; and|; are instructions of different
transactions anfl andl; do not conflict, then we can swap the ordel; ahdl; to produce a new schedié.
We expectSto be equivalent 08, since all instructions appear in the same ordéxoiin schedules except
for I; andl;, whose order does not matter.

If a schedulés can be transformed into a sched8Idy a series of swaps of non-conflicting instrucsion
we say thaBandS” areconflict equivalent

We say that a schedufas conflict serializableif it is conflict equivalent to a serial schedule.

Schedule 3 Schedule 6
T T2 T T2 T T, T T, Ty T2
read(A) read(A) read(A) read(A) read(A)
write(A) write(A) write(A) write(A) write(A)
read(A) read(A) read(B) read(B) read(B)
write(A) read(B) read(A) read(A) write(B)
read(B) write(A) write(A) write(B) read(A)
write(B) write(B) write(B) write(A) write(A)
read(B) read(B) read(B) read(B) read(B)
write(B) write(B) write(B) write(B) write(B)

Figure: Transforming Schedule 3 — which is conflict equivalent to serial schedule 6 —into Serial Schedule 6.

View Serializability

Let SandS” be two schedules with the same set of transactiims scheduleS andS™ are said to be

view equivalentf the following three conditions are met:

1. For each data iter®, if transactionT; reads the initial value d in schedules, then transaction
T, must, in schedul&’, also read the initial value .

Not view
equivalent.

Initial values of
Aand Bare read
by Tiin Schedule
1, but not by Tiin
Schedule 2.

T T, T T2 T T2

read(A read(A) @
write(A) write(A) write(A)

read(B) read(A)

write(B) write(B) write(A)
read(A) read(A)
write(A) write(A) write(B)

read(B) read(B) read(B)

write(B) write(B) write(B)

View equivalent.
Initial values of
Aand Bare read
by Tiinboth
schedules.

For each data itenQ, if transactionT; executesread(Q) in scheduleS and that value was
produced by awrite (Q) operation executed by transactidn then theread(Q) operation of
transactionT; must, in schedul&’, also read the value @ that was produced by the same
write (Q) operation in transaction.

16

View equivalent.
Schedule 10)
Aand B are written by 7; and
T, T, T, T,

read by T; in Schedule 2. The
read(A) read(A) same write operations by T
write(A) Cwrite(A]> and read operations by Ti
read(B) read(A have been performed in
@ write(A) Schedule 10.
read(A) read(B)
write(A) Cwrite(BD
read(B)
write(B)

3. For each data itenQ, the transaction (if any) that performs the finaite (Q) operation in
schedules must perform the finalrite (Q) operation in schedul®'.

. View equivalent.
equivalent. Final values of A

Final values of A and Bare written
and Bare written read(A) read A) read(A) by Tz in both
by Tz in Schedule ~Write(A) write(A) write(A) schedules.
1, but not by T3 read(B) read(B) read(A)
in Schedule 2. write(B) write(B)

read(A) read(A) read(B)

write(A) write(B)
read(B) read(B) read(B)
write(B)

Conditions 1 and 2 ensure that each transactiatsriee same values in both schedules and, therefore
performs the same computation. Condition 3, couplgld conditions 1 and 2, ensures that both sclesdul
result in the same final system state.

Every conflict serializable schedule is also vieaviaizable, but there are view serializable schesiu
that arenot conflict serializable Schedule 9 is view serializable, but not confietializable, since every
pair of consecutive instructions conflict, and,ghno swapping of instructions is possible.

Schedule 9
(View equivalent to Schedule %53, T4, Ts>) Serial Schedule 93, Ty, Te>
T | T T T | T | T
read(Q) read(Q)
write(Q) write(Q)
write(Q) write(Q)
write(Q) write(Q)

Blind Writes

Observe that, in schedule 9, transactidnsand Ts perform write(Q) operations without having
performed aread(Q) operation.Writes of this sort is calledblind writes that appear in every view
serializable schedule that is not conflict ser&hiz.

Recoverability

So far we have assumed that there are no transdectiores. We now need to address the effect of
transaction failures on concurrently running tratisas.

If a transactior; fails, for whatever reason, we need to undo theceff this transaction to ensure the
atomicity property of the transaction. In a systémat allows concurrent execution, it is necess#sy &
ensure that any transactidpthat is dependent of (i.e. Tj has read data written By) is also aborted. To
achieve this surety, we need to place restrictmmthe type of schedules permitted in the system.

17

Recoverable Schedules

A recoverable schedulis one where, for each pair of transacti®nandT; such that transactior) reads
a data item previously written by a transactionthe commit operation of; appears before the commit
operation ofT;.

Cascading Rollback and Cascadeless Schedules

The phenomenon, in which a single transaction iaileads to a series of transaction rollbacksailed
cascading rollback

A cascadeless schedule one where, for each pair of transacti®nandT; such thafl; reads a data item
previously written byf;, the commit operation af appears before the read operatioii;of

Testing for Serializability

The problem:How to determine, given a particular schedgjle’hether the schedule is serializable?
Testing for Conflict Serializability

1. Consider a schedukgof a set of transactiong, To, ..., Th.

2. We construct a directed graph calf@@cedence grapirom S. This graph consists of a p&= (V,
E), whereV is the set of vertices aritlis a set of edges.

The set of vertices consists of all the transastiparticipating in the schedule. The set of edges
consists of all the edgds— T; for which one of the three conditions holds:

a. T; executesvrite(Q) before Texecutesead(Q).
b. T; executesead(Q) before T executesvrite(Q).
c. T; executesvrite(Q) before T executesvrite(Q).

If an edgeT; — T, exists in the precedence graph, then, in any sscteduleS” equivalent toS T;
must appear beforg.

3. If the precedence graph has a cycle, then sch&lig@ot conflict serializable. If no cycle exists,
then it is conflict serializable.

4. If precedence graph is acyclic, the serializabititder can be obtained byt@pological sortingof

the graph.
Schedule 1 Schedule 2 Schedule 4
Ty T2 T T, T T,
read(A) read(A) read(A)
write(A) write(A) read(A)
read(B) read(B) write(A)
write(B) write(B) read(B)
read(A) read(A) write(A)
write(A) write(A) read(B)
read(B) read(B) write(B)
write(B) write(B) write(B)

olic

Testing for View Serializability

The problem of checking if a schedule is view dezadle falls in the class dfiP-complete problems.
Extension of the testing for conflict serializatyilio test for view serializability has cost exponal in the
size of the precedence graph.

However practical algorithms that just check s@uficient conditiongor view serializability can still
be used. That is, if the sufficient conditions saéisfied, the schedule is view serializable, bet¢ may be
view serializable schedules that do not satisffigaht conditions.

18

Chapter 16

Concurrency Control

Objective

How to ensure/implement the serializability progeat concurrent schedules?

Concurrency Schemes/Protocols

1. Lock-Based Protocols
Theme:Data items are accessed in a mutually exclusivenera
Locking Modes
1. Shared -Read-only
2. Exclusive— Read-Write
Locking Protocol:
When a transactioil; requests a lock on a data ite&nin a particular modé, the lock can be
granted provided that:
1. There is no other transaction holding a lock@nn a mode that conflicts witM. [Ensuring
serializability]
2. There is no other transaction that is waiting féoek onQ and that made its lock request before
T;. [Ensuring that starvation doesn’t occur]
a. Two-Phase Locking Protocol
Each transaction issues lock and unlock requedtgdrphases:
1. Growing Phase — May obtain locks, but may nietase locks
2. Shrinking Phase — May release locks, but mayhtain any new locks
Problems:
1. Doesn’'t ensure freedom from deadlock.
2. Cascading rollback might occur.
Solution:
1. Strict Two-Phase Locking Protocol
Requirements:
1. Two-phase locking
2. All exclusive-moddocks taken by a transaction be held until thangaction
commits.
2. Rigorous Two-Phase Locking Protocol
Requirements:
1. Two-phase locking
2. All locks taken by a transaction be held until thegaction commits.
3. Concurrency might become less.
Solution:
Two-Phase Locking with Lock Conversion
Requirements:
1. Two-phase locking
2. A shared lock can be upgraded to an exclusiek Ino the growing phase, and an
exclusive lock can be downgraded to a shared lo¢ka shrinking phase.
2. Graph-Based Protocols
Theme: Construct locking protocols requiring having prisrowledge about the order in which the
database items will be accessed.
a. Tree Protocol
The only lock instruction allowed is lock-X. Eaalansactionl; can lock a data item at most
once, and must observe the following rules:
1. The first lock byT; may be on any data item.

19

2. Subsequently, a data ite@can be locked by; only if the parent of is currently locked
by Ti.

3. Data items may be unlocked at any time.

4. A data item that has been locked and unlocked lmannot subsequently be relocked by
Ti.

Advantages:

1. Ensures conflict serializability.

2. Ensures freedom from deadlock.

Problems:

1. Doesn't ensure recoverability.

2. Doesn’t ensure cascadelessness.

How to ensure recoverability and cascadelessness:

The protocol can be modified to not permit releakexclusive locks until the end of the

transaction.

Problem with this solution:

Holding exclusive locks until the end of the tractgan reduces concurrency.

Alternative solution improving concurrency, but easng only recoverability:

For each data item with an uncommitted write, weoré which transaction performed
the last write to the data item. Whenever a traimacl; performs a read of an
uncommitted data item, we recordcammit dependencgf T, on the transaction that
performed the last write to the data item. Traneact; is then not permitted to commit
until the commit of all transactions on which itsheacommit dependency. If any of these
transactions abort3; must also be aborted.

Advantages over two-phase locking protocol:

1. Unlike two-phase locking, it's deadlock-free, sorntibacks are required.

2. Unlocking may occur earlier which may lead to sboxvaiting times and to an increase
in concurrency.

Disadvantages:

1. In some cases, a transaction may have to lock itlates that it does not access. This
additional locking results in increased locking ihead, the possibility of additional
waiting time, and a potential decrease in concayen

2. Without prior knowledge of what data items will det® be locked, transactions will have
to lock the root of the tree, and that can reducearrency greatly.

3. Timestamp-Based Protocols
Theme:Determines the serializability order by selectamgordering among transactions in advance.
Timestamp Values:
1. W-timestamp(Q) — largest timestamp of any transaction that exeetwutrite Q) successfully.
2. R-timestamp(Q) — largest timestamp of any transaction that exeetrgad() successfully.
a. Timestamp-Ordering Protocol

Objective:Ensures that any conflicting read and write operatiare executed in timestamp

order.

Protocol Operation:

1. Suppose a transactidhissues aead(Q).

a. If TS(T)) < W-timestampQ), thenT; needs to read a value @fthat was already
overwritten.
Hence, theead operation is rejected, afdis rolled back.

b. If TS(T;)) = W-timestampQ), then theread operation is executed, and R-
timestampQ) is set tamax(R-timestampQ), TS(T)).

2. Suppose that transactidnissueswrite (Q).

a. If TS(T;) < R-timestamp®), then the value of) thatT; is producing was needed
previously, and the system assumed that that wedudd never be produced.
Hence, thevrite operation is rejected, arigis rolled back.

b. If TS(T;) < W-timestampQ), thenT,; is attempting to write an obsolete valugf
Hence, thigvrite operation is rejected, arigis rolled back.

c. Otherwise, thavrite operation is executed, and W-timesta@yié set to TST)).

20

If a transactiorT; is rolled back by the concurrency-control schemeeasilt of issuance of
either a read or write operation, the system asdiggnnew timestamp and restarts it.

Advantages:

1. Ensures conflict serializability.
2. Ensures freedom from deadlock.

Disadvantages:

1. Possibility of starvation of long transactions gequence of conflicting short transactions
causes repeated restarting of the long transaction.
Possible Solution:
If a transaction is found to be getting restaregueatedly, conflicting transactions need to
be temporarily blocked to enable the transactidimish.
2. Generates schedules that are not recoverable.
Possible Solutions:
1. (Recoverability and cascadelessness)
A transaction is structured such that its writes all performed at the end of its
processing.
All writes of a transaction form an atomic actiow; transaction may execute while a
transaction is being written.
A transaction that aborts is restarted with a nevestamp.
2. (Recoverability and cascadelessness)
Limited form of locking; whereby reads of uncommdtitems are postponed until the
transaction that updated the item commits.
3. (Only recoverability)
Use commit dependencies to ensure recoverability.
b. Thomas’ Write Rule
Objective: Allowing greater potential concurrency than thengyal timestamp ordering
protocol.
Protocol:
Exactly the same as the general timestamp orderiwigcol except that in rule 2(b), the write
operation is ignored in cases where Ti5¢ R-timestampQ).
4. Validation-Based Protocols
Theme: In cases where a majority of transactions are-ogdyl transactions, the rate of conflicts
among transactions may be low. It may be betteiseoa scheme that imposes less overhead.
a. Optimistic Concurrency Control Scheme
The validation test for transactidhrequires that, for all; with TS(T;) < TS(T;) either one of
the following conditions holds:
1. finish(T;) < start(T;)
2. start(T;) < finish(T;) < validation(T;) and the set of data items written By does not
intersect with the set of data items readlpy
Advantage:Automatically guards against cascading rollbacks.
DisadvantagePossibility of starvation of long transactions.
Avoiding Starvation:Conflicting transactions must be temporarily blatke enable the
long transaction to finish.
5. Multiple Granularity *
Theme:So far the concurrency-control schemes described aach individual data item as the unit
on which synchronization has performed. There asaimstances, where it would be advantageous
to group several data items and to treat them asnmatividual synchronization unit. So, a mechanism
is needed to allow the system to define multiplele ofgranularities This allows data items to be
of various sizes and define a hierarchy of datageaities, where the small granularities are reeste
within larger ones.
a. Multiple Granularity Locking Protocol
Each transactiom; can lock a nod®, using the following rules:

! Granularity: the quality of being composed of relatively lapgticles.
21

The lock compatibility matrix must be observed.

The root of the tree must be locked first, and f@yocked in any mode.

A nodeQ can be locked by; in S or IS mode only if the parent @fis currently locked
by T; in either IX or IS mode.

4. A nodeQ can be locked b¥; in X, SIX, or IX mode only if the parent @ is currently
locked byT; in either IX or SIX mode.

5. T, can lock a node only if it has not previously wkied any node (that ig; is two-
phase).

6. T, can unlock a nod® only if none of the children & are currently locked by;.

Advantages:

1. Enhances concurrency

2. Reduces lock overhead

Disadvantage: Deadlock is possible. However, there are techmiguee reduce deadlock

frequency in this protocol, and also to eliminadadiock entirely.

6. Multiversion Schemes
Theme:The concurrency-control schemes discussed thuenfarre serializability by either delaying
an operation or aborting the transaction that d$be operation. These difficulties could be avdide
if old copies of each data item were kept in aeyst
a. Multiversion Timestamp-Ordering Scheme

Suppose that transactidnissues aead(Q) or write (Q) operation. LeQ denote the version

of Q whose write timestamp is the largest write timegtdess than or equal to TiH(

1. If transactionT; issues aead(Q), then the value returned is the content of ver§i

2. If transactionT; issues avrite (Q)

1. If TS(T;) < R-timestampQy), then transactiom; is rolled back.
2. If TS(T;) = W-timestampQx), the contents o are overwritten.
3. Else a new version @ is created.

Advantage:A read request never fails and is never made tb Wwaiypical database systems,

where reading is a more frequent operation thamriigng, this advantage may be of major

practical significance.

Disadvantages:

1. The reading of a data item also requires the upgdadf the R-timestamp field, resulting
in two potential disk accesses, rather than one.

2. The conflicts between transactions are resolvedutiir rollbacks, rather than through
waits. This alternative may be expensive.

Possible SolutionUse multiversion two-phase locking.

3. Does not ensure recoverability and cascadelessness.

Possible Solutionit can be extended in the same manner as the trasistamp-ordering
scheme to make it recoverable and cascadeless.
b. Multiversion Two-Phase Locking

Objective:Attempts to combine the advantages of multiversiomcurrency control with the

advantages of two-phase locking.

Operation:

1. Read-only transactions are assigned a timgstayn reading the current value of ts-
counter before they start execution; they folldlae multiversion timestamp-ordering
protocol for performing reads.

2. When an update transaction wants to read a dair itebtains a shared lock on it, and
reads the latest version.

3. When it wants to write an item, it obtains X-lodk it it then creates a new version of the
item and sets this version's timestampoto

4. When update transactidin completes, commit processing occurs:

a. T, sets timestamp on the versions it has creatést¢ounter + 1
b. T, incrementgs-counterby 1

wnN e

22

Concurrency Control

What is a concurrency control scheme and why iséeded?

One of the fundamental properties of a transactoisolation. When several transactions execute
concurrently in the database, the isolation prgperay no longer be preserved. To ensure this, yeteis
must control the interaction among the concurrearidactions and this control is achieved through a@in
the variety of mechanisms calledncurrency-controlschemes.

The concurrency-control schemes are based on thedizsbility property. That is, all the schemes
ensure that the schedules are serializable schsedule

Lock-Based Protocols

One way to ensure serializability is to requirettdata items be accessed in a mutually exclusive
manner; that is, while one transaction is accesaimgta item, no other transaction can modify tiaa
item.

The most common method used to implement this reouént is to allow a transaction to access a data
item only if it is currently holding a lock on thiaém.

Locks

A lock is a mechanism to control concurrent actessdata item.
Locking Modes

Data items can be locked in two modes:

1. Shared (S) Mode -data item can only be read. If a transacfiphas obtained a shared-mode lock
on itemQ, thenT; can read, but cannot wri@@ S-lock is requested usitgck-S instruction.

2. Exclusive (X) Mode —data item can be both read and written. If a tret@a T, has obtained an
exclusive-mode lock on itef®, thenT; can both read and wri@. X-lock is requested usifgck-X
instruction.

How Locks Work
» A lock on a data item can be granted to a transadii

1. No other transaction is holding a lock on it.
2. A transaction is holding an S-lock and the requestiiansaction is requesting for an S-lock.

» A transaction must hold a lock on a data item ag ks it accesses that item.

Problem with this:For a transaction to unlock a data item immediatdlgr its final access of
that data item is not always desirable, since kzadaility may not be ensured.

lllustration of this problem:

T T2
lock-X(B)
1. Let, B=200 —» read(B)
B:=B-50
2. Now, B =150 —» write(B)
unlock(B)
lock-S(A)
read(A) <4— 3. let, A=100
unlock(A)
lock-S(B)
read(B) <+«—— 4.B=150
unlock(B)
display(A+B) <+— 5. A+B=250
lock-X(A)
6. A=100 —> read(A)
7. Now, A = 150 —» A = A +50 After T; completes, A + B is 300. However,
write(A) 7> has already displayed the value 250!
unlock(A)

23

Solution of this problem:
Delay unlocking to the end of the transaction.
» Problems with locking
1. Deadlock
lllustration of deadlock:

Ty T,
1. Tilocks B — lock-X(B)
read(B)
B:=B-50
write(B)
|0Ck-S(A) <+ 2. 7-2 locks A
read(A)
lock-S(B) <4— 3. T; requests to lock B.
4. T; requests fo lock A. —» lock-X(A) However, as T; didn't unlock

However, as T, didn't B, 7; is made to wait.
unlock A, T; is made
to wait. DEADLOCK!!!

Solution: Coming later in this chapter.
2. Starvation

A transaction may be waiting for an X-lock on aenit while a sequence of other
transactions request and are granted an S-lockesdame item. Thus the first transaction

never makes progress and is said to be starved.
Solution:

When a transactiol; requests a lock on a data it€nin a particular mod#/, the lock can

be granted provided that:

1. There is no other transaction holding a lock®im a mode that conflictavith M.

2. There is no other transaction that is waiting féteek onQ and that made its lock request

beforeT;.
The Two-Phase Locking Protocol
This protocol requires that each transaction isscle and unlock requests in two phases:
1. Growing phase

» Transaction may obtain locks

Ts

» Transaction may not release any lock
2. Shrinking phase
* Transaction may release locks
* Transaction may not obtain any new locks

Initially, a transaction is in the growing phasdeTtransaction acquires locks as need
Once the transaction releases a lock, it entershtiheking phase, and it can issue no mc
lock requests.

Example:

Transactioril; on the right side is two-phase.

Note that the unlock instructions do not need foeap at the end of the transaction. For exampl&z,in

we could move theanlock(B) instruction to just after thieck-X(A) instruction.

2 In the lock-compatibility matrix below, all the mies other than the S-S are conflicting:

S X
S | true | false
X | false| false

24

lock-X(B)
read(B)
B:=B-50
write(B)

lock-X(A)
read(A)
A=A+50
write(A)

unlock(B)
unlock(A)

Problems with two-phase locking protocol:
1. Deadlock is not ensured.

The transactiong; and T, are in two-phase, but not deadlock-free as ilustt in the previous
illustration of deadlock.

Solution: see deadlock handling later in this chapter.
2. Cascading rollback may occur.
lllustration of this problem:

lock-X(A)

read(A)

lock-S(B)

read(B)

write(A)

unlock(A)
lock-X(A)
read(A)
write(A)
unlock(A)

LZZI::I-(XA(:)A\) <— Failure of 75 after this step leads

to cascading rollback of T4 and T7.

Solution:
The two-phase locking protocol may be modifiedny af the following ways:

1. Strict two-phase locking protocol:requires not only that locking be two-phase, bsb ghatall
exclusive-mode lockaken by a transaction be held until that trangactommits.

This requirement ensures that any data written byuacommitted transaction are locked in
exclusive mode until the transaction commits, pnéivg any other transaction from reading the
data.

2. Rigorous two-phase locking protocolrequires not only that locking be two-phase, bso #ghat
all lockstaken by a transaction be held until that traneaaommits.

3. Concurrency might become less.
lllustration of this problem:

Ts Tg
read(ay)
As Tg is writing aj, so it must X-lock @ before / read(ay)

read(a) in two-phase locking.
\ read(a,)

However, if Tg could initially lock a in shared write(ay)

mode and then could later change the lock to read(ay)
exclusive mode, we could get more read(ay)
concurrency, since Tgand Ty could access a display(a;tay)

and a, simultaneously.

Solution:
Allow lock conversion.

» We shall provide a mechanism for upgrading a shdomtt to an exclusive lock, and
downgrading an exclusive lock to a shared lock.

» However, upgrading can take place only in the gnowphase, whereas downgrading can take
place only in the shrinking phase.

25

» Note that a transaction attempting to upgrade k totan itemQ may be forced to wait. This
enforced wait occurs @ is currently locked by another transactiorsiaredmode.

> Further, if exclusive locks are held until the eridhe transaction, the schedules are cascadeless.

Example:
Ts To
lock-S(ay)
lock-S(ay)
lock-S(ay)
lock-S(ay)
lock-S(ag)
lock-S(ay)
unlock(ay)
unlock(ay)
lock-S(an)
upgrade(a,)

Use of two-phase locking protocol:

Strict two-phase locking and rigorous two-phaséilog (with lock conversions) are used extensivaly i
commercial database systems.

Graph-Based Protocols

If we have prior knowledge about the order in whith database items will be accessed, it is passibl
construct locking protocols that are not two phasieensures conflict serializability.

To acquire such prior knowledge, we impose a daotidering— on the set D =d, dy, .., dy} of all
data items. It — d;, then any transaction accessing baithndd; must accesd; before accessing. This
partial ordering may be the result of either thgidal or the physical organization of the dataitanay be
imposed solely for the purpose of concurrency adntr

The Tree Protocol

In the tree protocol, the only lock instructionoa¥ied is lock-X. Each transactidi can lock a data item
at most once, and must observe the following rules:

1. The first lock byT; may be on any data item.

2. Subsequently, a data ite@hcan be locked by; only if the parent of) is currently locked by;.
3. Data items may be unlocked at any time.

4. A data item that has been locked and unlocked; lognnot subsequently be relockedThy

/(/D\ Tic Tu Ti, Tiz
lock-X(B)
o @ lock-X(D)

Example:

lock-X(H)
@ unlock(D)
lock-X(E)
'@\ lock-X(D)
unlock(B)
@ unlock(E)
lock-X(B)
@ lock-X(E)
unlock(H)
lock-X(G)
unlock(D)
lock-X(D)
lock-X(H)
unlock(D)

unlock(H)
unlock(E)
unlock(B)

unlock(G)

26

Problem with Tree Protocol:
The tree protocol does not ensure recoverabilith@scadelessness.
Solution:

To ensure recoverability and cascadelessness,rttecpl can be modified to not permit release of
exclusive locks until the end of the transaction.

Problem with this solution:
Holding exclusive locks until the end of the tractg8an reduces concurrency.
Alternate solution improving concurrency, but ensag only recoverability:

For each data item with an uncommitted write, weord which transaction performed the last write to
the data item. Whenever a transacfigperforms a read of an uncommitted data item, werceacommit
dependencwyf T; on the transaction that performed the last watéhe data item. Transactidihis then not
permitted to commit until the commit of all transans on which it has a commit dependency. If afiy o
these transactions aborf$must also be aborted.

AdvantagegOver Two-Phase Locking Protocpl
1. Unlike two-phase locking, it's deadlock-free, sornlibacks are required.

2. Unlocking may occur earlier which may lead to saorvaiting times and to an increase in
concurrency.

Disadvantages:

1. In some cases, a transaction may have to lock itates that it does not access. This additional
locking results in increased locking overhead, plossibility of additional waiting time, and a
potential decrease in concurrency.

For example, a transaction that needs to accessitéatsA andJ in the database graph depicted
previously must lock not onlx andJ, but also data iten3, D andH.

2. Without prior knowledge of what data items will dete be locked, transactions will have to lock the
root of the tree, and that can reduce concurrenetly.

Comments:
Schedules not possible under two-phase locking@ssible under tree protocol, and vice versa.

Timestamp-Based Protocols

Another method for determining the serializabiliyder is to select an ordering among transactions i
advance usingmestamp-ordering

Timestamps
Each transaction is assigned a timestamp whenetethe system.

If an old transactioff; has timestamp T3{), a new transactiof is assigned timestamp TiH)(such that
TS(T) < TS().
How a timestamp can be generated:

1. Value of system clock -A transaction’s timestamp is equal to the valu¢hefclock when it enters
the system.

2. Logical counter — It is incremented after a new timestamp has besigaed. A transaction’s
timestamp is equal to the value of the counter whenters the system.

Basic Concept

The timestamps determine the serializability or@éws, if TST;) < TS(T;), then the system must ensure
that the produced schedule is equivalent to alsaieedule in whiclT; appears befor§;.

27

To implement this, the protocol maintains for edekaQ two timestamp values:

1. W-timestamp(Q) — largest timestamp of any transaction that exeetwutrite Q) successfully.
2. R-timestamp(Q) — largest timestamp of any transaction that exeetrgad() successfully.

These timestamps are updated whenever a newQeadvrite@Q) instructions are executed.

The Timestamp Ordering Protocol

The timestamp ordering protocol ensures that amflicong read andwrite operations are executed in
timestamp order.

1. Suppose a transactidhissues aead(Q).

a. If TS(T;) < W-timestampQ), thenT; needs to read a value @fthat was already overwritten.
Hence, theead operation is rejected, ariglis rolled back.

Rollbacked —=»(T.) | Tius If TS(T) < W-timestamp(Q) then
write(Q) 1. Reject read(Q)
Rejected —» read(Q) 2. Rollback (T)

?

T;would read a value of @ that's already overwritten

b. If TS(T;)) = W-timestampQ), then theread operation is executed, and R-timesta@)p€ set
to max(R-timestampQ), TS(T;)).

Ti
Case 1:
TS(T) = W-timestamp(Q) write(Q)
. R-timestamp(Q) = TS(T)
read(Q)
Case 2: T, | T
TS(T) > W-timestamp(Q) write(Q)
. R-timestamp(Q) = TS(T)

read(Q)

Case 3: T | T | T
TS(T) > W-timestamp(Q) read(Q)
" R-timestamp(Q) = R-timestamp(Q) ~ Write(Q)

read(Q)
2. Suppose that transactidnissueswrite (Q).

a. If TS(T)) < R-timestampD), then the value o thatT,; is producing was needed previously,
and the system assumed that that value would tevproduced.

Hence, thevrite operation is rejected, afddis rolled back.

Rollbacked —=»(T) | Tius If TS(T) < R-timestamp(Q) then
read(Q) 1. Reject write(Q)
Rejected —» write(Q) T 2. Rollback (T)

T;.+1 needed value of @ and assumed that @ would never be produced

b. If TS(T;) < W-timestampQ), thenT,; is attempting to write an obsolete valugf
Hence, thigvrite operation is rejected, arigis rolled back.

Rollbacked —»(T) | Tius If TS(T) < W-timestamp(Q) then
Read(Q) | ... 3. Reject write(Q)
write(Q) 4. Rollback (T)

Rejected —» write(Q) | ...

T; is attempting to write an obsolete value of @
c. Otherwise, thavrite operation is executed, and W-timesta@yi€ set to TST)).
28

If a transactior; is rolled back by the concurrency-control schemeeaslt of issuance of either a read
or write operation, the system assigns it a nevestiaamp and restarts it.

Advantages:

1. Ensures conflict serializability.
2. Ensures freedom from deadlock as no transactionvesis.

Disadvantages:

1. Possibility of starvation of long transactions i$eguence of conflicting short transactions causes
repeated restarting of the long transaction.

Solution:

If a transaction is found to be getting restartegeatedly, conflicting transactions need to be
temporarily blocked to enable the transactionrndsh.

2. Generates schedules that are not recoverable andeopaire cascading rollbacks.
Possible Solutions:
1. Ensuring both recoverability and cascadelessness
A transaction is structured such that its writesall performed at the end of its processing.

All writes of a transaction form an atomic actiamp transaction may execute while a
transaction is being written.

A transaction that aborts is restarted with a nevestamp.
2. Ensuring both recoverability and cascadelessness

Limited form of locking; whereby reads of uncommdtitems are postponed until the
transaction that updated the item commits.

3. Ensuring only recoverability
Use commit dependencies to ensure recoverability.
Thomas’ Write Rule

Modified version of the timestamp-ordering prototoivhich obsoletavrite operations may be ignored
under certain circumstances, thus allowing grgadégntial concurrency.

T | T
The timestamp ordering protocol requires thabe rolled back ifl; issues write) read(Q)
and TST;) < W-timestampQ). However, in Thomas’ Write Rule, in those casésne write(Q)
TS(T;) > R-timestampQ), we ignore the obsolete write. write(Q)

Thomas' Write Rule allows greater potential cormuey. This change makes it possible to generate
some serializable schedules that are not possitalertthe other protocols.

Validation-Based Protocols

In cases where a majority of transactions are ogdyl-transactions, the rate of conflicts among
transactions may be low. It may be better to useh@me that imposes less overhead.

Phases of a Transaction

A difficulty in reducing the overhead is to know @aulvance which transactions will be involved in a
conflict. To gain this knowledge, a scheme for nanimg the system is needed.

We assume that execution of transactions done in two or three different phases in itgtirhe,
depending on whether it is a read-only or an upttatesaction. The phases are, in order:

1. Read and execution phaseThe Transactioi; reads the value of various data items and st@m th
in variables local td;. It performs all write operations on temporarydbeariables, without updates
of the actual database.

29

2. Validation phase TransactionTl; performs avalidation testto determine if local variables can be
written to database without violating serializatyili

3. Write phase If T; is validated, the updates are applied to the hdatabase; otherwis@; is rolled
back.

The Validation Test

To perform the validation test, it is needed towmnehen the various phases of transaciiptook place.
It is associated with 3 timestamps:

1. Start(T;): the time wher; started its execution.
2. Validation(T;): the time wher; entered its validation phase.
3. Finish(T;): the time wherT; finished its write phase.

Serializability order is determined by timestampegi at validation time to increase concurrency.sThu
TS(T;) = Validation(;).

The validation test for transactiof) requires that, for alll; with TS(T;) < TS(T;) either one of the
following conditions holds:

1. finish(T;) < start(T).
SinceT; completes its execution befofestarted, the serializability order is indeed maimed.

2. start(T;) < finish(T;) < validation(T;). That is, the set of data items written hydoes not intersect
with the set of data items read Iy andT; completes its write phase befdfestarts its validation
phase.

This condition ensures that the writesTofindT; do not overlap. Since the writes hfdo not affect
the read offj, and sincd; cannot affect the read ®f, the serializability order is indeed maintained.

Example:
T14 Tis
read(B)
read(B)
B:=B-50
read(A)
A:=A+50
read(A)
<validate>
display(A + B)
<validate>
write(B)
write(A)
Advantage:

Automatically guards against cascading rollbacksces the actual writes take place only after the
transaction issuing the write has committed.

Problem:

Possibility of starvation of long transactions, doea sequence of conflicting short transactioregt th
cause repeated restarts of the long transaction.

Solution: Conflicting transactions must be temporarily blatke enable the long transaction to finish.
Comments:

The validation scheme is also calledogsimistic concurrency controkince transaction executes fully
in the hope that all will go well during validationn contrast, locking and timestamp ordering are
pessimisticin that they force a wait or a rollback wheneveroaflict is detected, even though there is a
chance that the schedule may be conflict seridkzab

30

Multiple Granularity
The Problem

In the concurrency-control schemes described thuswe have used each individual data item as the
unit on which synchronization is performed. Theme a&ircumstances, however, where it would be
advantageous to group several data items, anddbttrem as one individual synchronization unit.

For example, if a transactidn needs to access the entire database, and a Iquiatarol is used, then
T, must lock each item in the database. Clearly, @wx&g these locks is time consuming. It would bédye
if T; could issue a single lock request to lock thererdatabase. On the other hand, if transacfjoneeds
to access only a few data items, it should not dmuired to lock the entire database, since otherwis
concurrency is lost.

Solution

What is needed is a mechanism to allow the systewtetine multiple levels of granularity. We can
make one by allowing data items to be of varioassiand defining a hierarchy of data granularitidsere
the small granularities are nested within largeesorSuch a hierarchy can be represented grapheslly
tree.

Difference between the Multiple Granularity tree drthe tree in Tree Protocol

A nonleaf node of the multiple-granularity tree negents the data associated with its descendarttse |
tree protocol, each node is an independent data ite

Illustration of the Protocol @ .
Entire Database
Locking Nodes

-
- Each node in the tree can be locke @ Areas

individually.
e Files

- There are two lock modesshared
andexclusive

- When a transaction locks a node, . . @ \.e Records
either shared or exclusive mode, tt e e e o 0

transaction also has implicitly locked all the d=stants of that node in the same lock mode.

For example, if transactiofi gets arexplicit lock on file F, of the above figure in exclusive mode,
then it has ammpilicit lock in exclusive mode all the records belongimghiat file. It does not need to
lock the individual records d¥, explicitly.

Problem 1: How the system would determine whether ilansaction can lock a node?

Suppose that transactidi wishes to lock recordys of file F,. SinceT; has lockedr, explicitly, it
follows thatrys is also locked (implicitly). But, whefl; issues a lock request fog, res is not explicitly
locked! How does the system determine wheThean lockrpys?

Solution to Problem 1

T; must traverse the tree from the root to recgdlf any node in that path is locked in an inconigat
mode, ther; must be delayed.

Problem 2: How does the system determine if the romode can be locked?

Suppose now that transactidpwishes to lock the entire database. To do sanply must lock the root
of the hierarchy. Note, however, thBt should not succeed in locking the root node, sifhds currently
holding a lock on part of the tree (specifically file F). But how does the system determine if the root
node can be locked?

A Possible Solution to Problem 2
Tk should search the entire tree.

31

Problem with this solution:This solution defeats the whole purpose of the iplelgranularity locking
scheme.

More Efficient Solution to Problem 2

Introduce a new class of lock modes, caitgdntion lock modes

If a node is locked in an intention mode, explioitking is being done at a lower level of the tree
(that is, at a finer granularity).

Intention locks are put on all the ancestors obdenbefore that node is locked explicitly.

A transaction wishing to lock a node — s@y— must traverse a path in the tree from the roQ.t
While traversing the tree, the transaction lockswarious nodes in an intention mode.

Thus, a transaction does not need to search the d¢rde to determine whether it can lock a node
successfully.

Different Types of Intention Mode Locks

1.

Intention-Shared (IS) Mode: If a node is locked in intention-shared (IS) moebeplicit locking is
being done at a lower level of the tree, but witlyshared-mode locks.

Intention-Exclusive (1X) Mode: If a node is locked in intention-exclusive (IX) nedhen explicit
locking is being done at a lower level, with exchesmode or shared-mode locks.

Shared and Intention-Exclusive (SIX) modelf a node is locked in shared and intention-exghis
(SIX) mode, the subtree rooted by that node isddc&xplicitly in shared mode, and that explicit
locking is being done at a lower level with excesmode locks.

Compatibility Function for the Various Lock Modes

IS IX 5 SIX X

IS true | true | true | true | false

IX | true | true | false | false | false

S true | false | true | false | false

SIX | true | false | false | false | false

X | false | false | false | false | false

The Multiple-Granularity Locking Protocol

Each transactiom; can lock a nod® by following these rules:

1. It must observe the lock-compatibility functionvarious lock modes.
2. It must lock the root of the tree first, and cackiat in any mode.

3. Itcanlock a nod€ in S or IS mode only if it currently has the parehQ locked in either IX or
IS mode.

4. It can lock a nod®) in X, SIX, or IX mode only if it currently has thgarent ofQ locked in
either IX or SIX mode.

5. It can lock a node only if it has not previouslyasked any node (that i3; is two phase).
6. It can unlock a nod® only if it currently has none of the children@flocked.

Observe that the multiple-granularity protocol regsl that locks be acquired in top-down (root-tafle
order, whereas locks must be released in bottoifieapto-root) order.

Examples

Consider the following four transactions.

Note that transactionEs, T1g, andTig can access the database concurrently. Transagti@an execute
concurrently withT6, but not with eithellzo or Ta1.

32

1. Lock DB in IS mode @

3. Lock Fy, in IS mode

Tie |
read(r) | 4. Lock a2 in § mode

1. Lock DB in[X mode @

Ty |
write(ra1) |

Tig |
read(F,) |

Tio |
read(DB) |

Advantages

1. Ensures serializability
2. Enhances concurrency and reduces lock over
3. Particularly useful irmpplications that include a mix
a. Short transactions that access only a few dates
b. Long transactions th@roduce reports from an entire file or set of

Disadvantage
Deadlock is possible in the protocol that we hageit is in the tw-phase locking protoct

33

However, there are techniques to reduce deadl@diuéncy in the multiple-granularity protocol, and
also to eliminate deadlock entirely.

Deadlock Handling

A system is said to be in a deadlock state if tleists a set of transactions such that every dcim
in the set is waiting for another transaction i tbet. More precisely, there exists a set of waitin
transactions {o, T1, . . ., Tn} such thatTy is waiting for a data item thdy holds, andT; is waiting for a
data item thaf, holds, and ..., andl,.; is waiting for a data item that, holds, andr,, is waiting for a data
item thatTy holds. None of the transactions can make progmnessch a situation.

Principal Methods for Dealing with Deadlock Problem

1. We can use aeadlock preventiomprotocol to ensure that the system will never reateleadlock

State.

2. Alternatively, we can allow the system to entereadlock state, and then try to recover by using a

deadlock detection and deadlock recovepheme.

As we shall see, both methods may result in tramsamllback.

Prevention is commonly used if the probability ttte system would enter a deadlock state is religtiv
high; otherwise, detection and recovery are mdieient.

Deadlock Prevention

There are two approaches to deadlock prevention:

1.

Ensuring that no cycle waits can occur by orderinghe requests for locks, or requiring all locks
to be acquired together.

Different Schemes for this approach:

1.

Each transaction locks all its data items beforéegins execution. Moreover, either all are
locked in one step or none are locked.

Disadvantages:

1. ltis often hard to predict, before the transachbegins, what data items need to be locked.
2. Data-item utilization may be very low, since marnytioe data items may be locked but
unused for a long time.

Impose an ordering of all data items, and a tram@sads required to lock data items only in a
sequence consistent with the ordering.

We have seen one such scheme in the tree prowiaich uses a partial ordering of data items.

A variation of the above approach is to use a totdér of data items, in conjunction with two-
phase locking. Once a transaction has locked #cpkat item, it cannot request locks on items
that precede that item in the ordering.

This scheme is easy to implement, as long as thefs#ata items accessed by a transaction is
known when the transaction starts execution.

Using preemption and transaction rollbacks.

In preemption, when a transactidnrequests a lock that transactibnholds, the lock granted to
T, may be preempted by rolling backTaf and granting of the lock {B.

To control the preemption, we assign a unique tiamp to each transaction. The system uses
these timestamps only to decide whether a tramsastiould wait or roll back.

If a transaction is rolled back, it retains its tldestamp when restarted.

Locking is still used for concurrency control.

34

Deadlock Prevention Schemes using Timestamps

1.

Wait-Die Scheme[Non-Preemptive Technigue

When transactioil; requests a data item currently heldThyT; is allowed to wait only if it has a
timestamp smaller than that §f(i.e. T; is older thar;). OtherwiseT; is rolled back (dies).

For example, suppose that transactidng, T,z and T,4 have timestamps 5, 10 and 15
respectively. IfT,; requests a data item held By, thenT,, will wait. If To4 requests a data item
held byT,s, thenT,4 will be rolled back.

Wound-Wait Scheme[Preemptive Techniqlie
This scheme is a counterpart to the wait-die scheme

When transactiofl; requests a data item currently heldTpyT; is allowed to wait only if it has a
timestamp larger than that @f (i.e. T; is younger thar;). Otherwise,T; is rolled back T is
wounded byf;).

Returning to our example, with transactidng, To3 and Ty, if Ty, requests a data item held by
T3, then the data item will be preempted frdg, andT,3 will be rolled back. IfT,4 requests a
data item held b¥>3, thenTz,4 will wait.

. Request . Request . . Requestl . Request ‘

Wait Rollback Rollback Wait

Wait-Die Scheme Wound-Wait Scheme

Proof That Both Wait-Die and Wound-Wait Schemes Ava Starvation

At any time, there is a transaction with the snsallemestamp. This transaction cannot be

required to roll back in either scheme. Since tia@ps always increase, and since transactions are
not assigned new timestamps when they are rollel, lzatransaction that is rolled back repeatedly
will eventually have the smallest timestamp, atalifpoint it will not be rolled back again.

Differences Between Wait-Die and Wound-Wait Schemes

1.

In the wait—die scheme, an older transaction muast for a younger one to release its data item.
Thus, the older the transaction gets, the moendd to wait.

By contrast, in the wound-wait scheme, an oldenstation never waits for a younger
transaction.

In the wait—die scheme, if a transactirdies and is rolled back because it requestedaaitigm
held by transactiofi;, thenT; may reissue the same sequence of requests wiseredtarted. If
the data item is still held by, thenT; will die again. ThusT; may die several times before
acquiring the needed data item.

Contrast this series of events with what happenthenwound-wait scheme. Transactifnis
wounded and rolled back becalu$eequested a data item that it holds. Whiers restarted and
requests the data item now being heldlpyT; waits. Thus, there may be fewer rollbacks in the
wound-wait scheme.

Major Problem with Both of the Scheme&innecessary rollbacks may occur.

Timeout-Based Scheme

In this approach, a transaction that has requestedk waits for at most a specified amount of time
If the lock has not been granted within that tinfe, transaction is said to time out, and it rakelf
back and restarts.

If there was in fact a deadlock, one or more trati@as involved in the deadlock will time out and
roll back, allowing the others to proceed.

35

- This scheme falls somewhere between deadlock piemenvhere a deadlock will never occur, and
deadlock detection and recovery.

Advantages

1. Particularly easy to implement
2. Works well if transactions are short and if longtware likely to be due to deadlocks.

Disadvantages

1. In general, it is hard to decide how long a tratieacmust wait before timing out. Too long a wait
results in unnecessary delays once a deadlockdtasred. Too short a wait results in transaction
rollback even when there is no deadlock, leadingdsted resources.

2. Starvation is also a possibility with this scheme.

Deadlock Detection

The Wait-For Graph

Deadlocks can be described precisely in termsdifeted graph calledwait-for graph.
This graph consists of a p&k= (V, E), where

V is a set of vertices which consists of all thesections in the system

E is a set of edges where each element is an orgaretl — T,;.

If T — T;is inE, then there is a directed edge from transacficio T;, implying that transactioff; is
waiting for transactiof; to release a data item that it needs.

When transactiofl; requests a data item currently being held by &retienT;, then the edg& — T, is
inserted in the wait-for graph. This edge is remtbweely when transactiof; is no longer holding a data
item needed by transactidn

A deadlock exists in the system if and only if thait-for graph contains a cycle. Each transaction
involved in the cycle is said to be deadlocked.détect deadlocks, the system needs to maintaiwaite
for graph, and periodically to invoke an algoritbimat searches for a cycle in the graph.

4

Figure 16.18 Wait-for graph withno cycle. Figure 16.19 Wait-for graph with a cycle.

Example

When Should the Detection Algorithm be Invoked?
The answer depends on two factors:

1. How often does a deadlock occur?
2. How many transactions will be affected by the deeki?

If deadlocks occur frequently, then the dibec algorithm should be invoked more frequentl
than usual. Data items allocated to deadlockeda@ions will be unavailable to other transactionsl the
deadlock can be broken. In addition, the numbeyofes in the graph may also grow. In the worsecas
would invoke the detection algorithm every timeeguest for allocation could not be granted immetiyat

Deadlock Recovery

When a detection algorithm determines that a de&dkxists, the system must recover from the
deadlock. The most common solution is to roll bank or more transactions to break the deadloclkeel hr
actions need to be taken:

36

1. Selection of a Victim

Given a set of deadlocked transactions, we mustmé@te which transaction (or transactions) to
roll back to break the deadlock. We should rollkb#tmse transactions that will incur the minimum
cost. Unfortunately, the term minimum cost is ngiracise one. Many factors may determine the
cost of a rollback, including

a. How long the transaction has computed, and how nharger the transaction will compute

before it completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs tmicomplete.

d. How many transactions will be involved in the roi.

2. Rollback

Once we have decided that a particular transactiost be rolled back, we must determine how
far this transaction should be rolled back.

1. Total Rollback: Abort transaction and then restart it.
2. Partial Rollback: Roll back the transaction only as far as necedsdoyeak the deadlock.

3. Starvation

In a system where the selection of victims is bgs#darily on cost factors, it may happen that
the same transaction is always picked as a viohsna result, this transaction never completes its
designated task, thus there is starvation. We mstire that transaction can be picked as a victim
only a (small) finite number of times. The most eoom solution is to include the number of
rollbacks in the cost factor.

37

