

DBMS – II

Prepared ByPrepared ByPrepared ByPrepared By

Sharafat Ibn Mollah MosharrafSharafat Ibn Mollah MosharrafSharafat Ibn Mollah MosharrafSharafat Ibn Mollah Mosharraf

CSE, DUCSE, DUCSE, DUCSE, DU
12121212thththth Batch Batch Batch Batch ((((2005200520052005----2006200620062006))))

Study GuideStudy GuideStudy GuideStudy Guide

Table of Contents

CHAPTER 9: OBJECT-BASED DATABASES ... 3

CHAPTER 15: TRANSACTIONS ... 11

CHAPTER 16: CONCURRENCY CONTROL.. 19

3

Chapter 9

Object-Based Databases

Terms and Definitions

Object-Relational Data Model

The object-relational data model is an extension of the relational data model which provides a richer
type system including complex data types and object orientation.

Object-Relational Database Systems

Object-relational database systems are database systems based on the object-relation model and provide
a convenient migration path for users of relational databases who wish to use object-oriented features.

Persistent Programming Languages

Persistent Programming Languages refers to extensions of existing programming languages to add
persistence and other database features using the native type system of the programming language.

Object-Oriented Database Systems

Object-oriented database systems refers to database systems that support an object-oriented type system
and allow direct access to data from an object-oriented programming language using the native type system
of the language.

SQL Complex Data Types Syntax with Comparison to OOP Language Syntax

Structured Types

SQL: User-Defined Types

ERD: Composite Attributes

OOP: Class

ERD SQL OOP (Java)

create type Name as (
 firstname varchar(20),
 lastname varchar(20)
) final

final class Name {
 String firstname;
 String lastname;
}

create type Address as (
 street varchar(20),
 city varchar(20),
 zipcode varchar(9)
) not final

class Address {
 String street;
 String city;
 String zipcode;
}

The final specification for Name indicates that we cannot create subtypes for name, whereas the not
final specification for Address indicates that we can create subtypes of address.

Creating a Table from These Types

1. By directly using these types in the table declaration:

Address

street

city

zipcode

Name

firstname lastname

4

create table customer as (
 name Name,
 address Address,
 dateOfBirth date
)

2. By declaring a type consisting of these types and then declaring a table of this new type:

create type CustomerType as (
 name Name,
 address Address,
 dateOfBirth date
) not final

create table customer of CustomerType

Directly Creating a Table Using Unnamed Row Types Instead of Creating Intermediate Types

create table customer_r (
 name row (firstname varchar(20),
 lastname varchar(20)),
 address row (street varchar(20),
 city varchar(20),
 zipcode varchar(9)),
 dateOfBirth date
)

Methods

SQL OOP (Java)

create type CustomerType as (
 name Name,
 address Address,
 dateOfBirth date
) not final
method ageOnDate(onDate date)
 returns interval year

create instance method ageOnDate(onDate date)
 returns interval year
 for CustomerType
begin
 return onDate – self.dateOfBirth;
end

class CustomerType {
 Name name;
 Address address;
 Date dateOfBirth;

 int ageOnDate(Date onDate) {
 return onDate – this.dateOfBirth;
 }
}

The for clause indicates which type this method is for, while the keyword instance indicates that this
method executes on an instance of the CustomerType type. The variable self refers to the instance of
CustomerType on which the method is invoked.

Method Invocation

create table customer of CustomerType

5

select name.lastname, ageOnDate(current_date)
from customer

Constructor Functions

• Used to create values of structured types.

• A function with the same name as a structured type is a constructor function for the structured
type.

• Every structured type has a default constructor – i.e. constructor with no arguments.

• Constructors can be overloaded.

create function Name (firstname varchar(20), lastname varchar(20))
returns Name
begin
 set self.firstname = firstname;
 set self.lastname = lastname;
end

Creating a Tuple Using Constructor

insert into customer
values (
 new Name(′John′, ′Smith′),
 new Address(′20 Main Street′, ′New York′, ′11001′),
 date ′1960-8-22′
)

Creating a Tuple without Using Constructor

insert into customer
values (
 (′John′, ′Smith′),
 (′20 Main Street′, ′New York′, ′11001′),
 ′1960-8-22′
)

Type Inheritance

ERD

name address

Person

Student

degree

department

Teacher

salary

department

ISA

6

SQL

create type Person (
 name varchar(20),
 address varchar(20)
)

create type Student under Person (
 degree varchar(20),
 department varchar(20)
)

create type Teacher under Person (
 salary integer,
 department varchar(20)
)

OOP (Java)

class Person {
 String name;
 String address;
}

class Student extends Person {
 String degree;
 String department;
}

class Teacher extends Person {
 int salary;
 String department;
}

Multiple Inheritance

create type TeachingAssistant under Student, Teacher

However, the attribute department is defined separately in Student and Teacher and thus conflict in
TeachingAssistant. To avoid a conflict between the two occurrences of department, we can rename them by
using an as clause:

create type TeachingAssistant
 under Student with (department as student_dept),
 Teacher with (department as teacher_dept)

Notes

• Multiple inheritance is not supported in current SQL standard (up to SQL:1999 and SQL:2003).

• Subtypes can override methods of the supertype.

• Allowing creation of subtypes from types can be controlled by the keywords final and not final .

Table Inheritance

create table people of Person
create table students of Student under people
create table teachers of Teacher under people

7

Notes

• Types of the subtables must be subtypes of the type of the parent table. Therefore, every attribute
present in people is also present in the subtables.

• When we declare students and teachers as subtables of people, every tuple present in students or
teachers becomes also implicitly present in people. Thus, if a query uses the table people, it will
find not only tuples directly inserted into that table, but also tuples inserted into its subtables,
namely students and teachers. However, only those attributes that are present in people can be
accessed.

• SQL permits us to find tuples that are in people but not in its subtables by using “only people” in
place of people in a query. The only keyword can also be used in delete and update statements.
Without the only keyword, a delete statement on a supertable, such as people, also deletes tuples
that were originally inserted in subtables.

• Multiple inheritance of tables is not supported by SQL. However, conceptually it is possible:

create table teaching_assistants of TeachingAssistant under students, teachers

As a result of the declaration, every tuple present in the teaching_assistants table is also
implicitly present in the teachers and in the students table, and in turn in the people table.

Therefore, SQL subtables cannot be used to represent overlapping specializations from the ERD.

Consistency Requirements for Subtables

There are some consistency requirements for subtables. Before we state the constraints, we need a
definition: we say that tuples in a subtable corresponds to tuples in a parent table if they have the same
values for all inherited attributes. Thus, corresponding tuples represent the same entity.

The consistency requirements for subtables are:

1. Each tuple of the supertable can correspond to at most one tuple in each of its immediate subtables.

2. SQL has an additional constraint that all the tuples corresponding to each-other must be derived from
one tuple (inserted into one table).

For example, without the first condition, we could have two tuples in students (or teachers) that
correspond to the same person. The second condition actually prevents a person from being both a teacher
and a student.

Collection Types: Arrays and Multisets

• A multiset is an unordered collection where an element may occur multiple times. Multisets are
like sets, except that a set allows each element to occur at most once.

• Unlike elements in a multiset, the elements of an array are ordered.

create type Book as (
 title varchar(20),
 author_array varchar(20) array [10],

pub_date date,
publisher Publisher,
keyword_set varchar(20) multiset

)

Creating Collection Values

We can insert a tuple into the books relation as follows:

8

insert into books
values (

′Compilers′,
array [′Smith′,′Jones′],
new Publisher(′McGraw-Hill′,′New York′),
multiset[′parsing′,′analysis′])

)

Querying Collection-Valued Attributes: Nesting and Unnesting

Unnesting

The transformation of a nested relation into a form with fewer (or no) relation-valued attributes is called
unnesting.

Consider the following books relation:

title author_array publisher (name, branch) keyword_set

Compilers [Smith, Jones] (McGraw-Hill, New York) {parsing, analysis}

Networks [Jones, Frick] (Oxford, London) {Internet, Web}

Suppose that we want to convert the relation into a single flat relation, with no nested relations or
structured types as attributes. We can use the following query to carry out the task:

select title, A.author, publisher.name as pub_name, publisher.branch as pub_branch, K.keyword
from books as B, unnest (B.author_array) as A(author), unnest (B.keyword_set) as K(keyword)

The variable B in the from clause is declared to range over books. The variable A is declared to range
over the authors in author_array for the book B, and K is declared to range over the keywords in the
keyword_set of the book B.

The result of the preceding query is the following relation which is in 1NF:

title author pub_name pub_branch keyword

Compilers Smith McGraw-Hill New York parsing

Compilers Jones McGraw-Hill New York parsing

Compilers Smith McGraw-Hill New York analysis

Compilers Jones McGraw-Hill New York analysis

Networks Jones Oxford London Internet

Networks Frick Oxford London Internet

Networks Jones Oxford London Web

Networks Frick Oxford London Web

When unnesting an array, the previous query loses information about the ordering of elements in the
array. The unnest with ordinality clause can be used to get this information, as illustrated by the following
query:

select title, A.author, publisher.name as pub_name, publisher.branch as pub_branch, K.keyword
from books as B, unnest (B.author_array) with ordinality as A(author), unnest (B.keyword_set) as K(keyword)

Nesting

The reverse process of transforming a 1NF relation into a nested relation is called nesting.

Nesting can be carried out by an extension of grouping in SQL. In the normal use of grouping in SQL, a
temporary multiset relation is (logically) created for each group, and an aggregate function is applied on the

9

temporary relation to get a single (atomic) value. The collect function returns the multiset of values instead
of creating a single value.

The above 1NF relation can be converted back to the nested relation using the following query:

select title, collect(author) as author_set, Publisher(pub_name, pub_branch) as publisher,
collect(keyword) as keyword_set

from flat_books
group by title, publisher

Another approach to creating nested relations is to use subqueries in the select clause. An advantage of
the subquery approach is that an order by clause can be optionally used in the subquery to generate results
in a desired order, which can then be used to create an array.

The following query illustrates this approach; the keywords array and multiset specify that an array and
multiset (respectively) are to be created from the results of the subqueries.

select title,
 array (

select author
from authors as A
where A.title = B.title
order by A.position

) as author_array,
Publisher(pub-name, pub-branch) as publisher,
multiset (

select keyword
from keywords as K
where K.title = B.title

) as keyword_set,
from flat_books as B

Updating Multiset Attributes

The SQL standard does not provide any way to update multiset attributes except by assigning a new
value. For example, to delete a value v from a multiset attribute A, we would have to set it to (A except all
multiset[v]).

Object-Identity and Reference Types in SQL

Please read the topic (no. 9.6, pages 376-378 – 5th edition) from the book thoroughly… �

Implementing O-R Features

Storing Complex Data Types

The complex data types supported by object-relational systems can be translated to the simpler system of
relational databases. The techniques for converting E-R model features to tables can be used, with some
extensions, to translate object-relational data to relational data at the storage level.

How Subtables can be Stored in an Efficient Manner

Subtables can be stored in an efficient manner, without replication of all inherited fields, in one of two
ways:

10

• Each table stores the primary key (which may be inherited from a parent table) and the attributes
are defined locally. Inherited attributes (other than the primary key) do not need to be stored, and
can be derived by means of a join with the supertable, based on the primary key.

• Each table stores all inherited and locally defined attributes. When a tuple is inserted, it is stored
only in the table in which it is inserted, and its presence is inferred in each of the supertables.
Access to all attributes of a tuple is faster, since a join is not required.

How Arrays and Multisets can be Represented

Implementations may choose to represent array and multiset types directly, or may choose to use a
normalized representation internally. Normalized representations tend to take up more space and require an
extra join / grouping cost to collect data in an array or multiset. However, normalized representations may
be easier to implement.

Summary of Strengths of Various Kinds of Database Systems

• Relational System: Simple data types, powerful query languages, high protection.

• Persistent Programming Language-Based OODBs: Complex data types, integration with
programming language, high performance.

• Object-Relational Systems: Complex data types, powerful query languages, high protection.

11

Chapter 15

Transactions

Transactions

A transaction is a unit of program execution that accesses and possibly updates various data items.

For example, a transfer of funds from a checking account to a savings account consists of several
operations from the point of view of the database system. All these operations result into a single
transaction.

The ACID Properties of Transaction

To ensure integrity of the data, we require that the database system maintain the following properties of
the transactions:

� Atomicity

Either all operations of the transaction are reflected properly in the database or none at all.

� Consistency

Execution of a transaction in isolation (that is, with no other transaction executing concurrently)
preserves the consistency of the database.

� Isolation

Even though multiple transactions may execute concurrently, the system guarantees that, for
every pair of transactions Ti and Tj, it appears to Ti that either Tj finished execution before Ti
started, or Tj started execution after Ti finished. Thus, each transaction is unaware of other
transactions executing concurrently in the system.

� Durability

After a transaction completes successfully, the changes it has made to the database persist, even
if there are system failures.

How Transaction Accesses Data

Transactions access data using two operations:

� read(X), which transfers the data item X from the database to a local buffer belonging to the
transaction that executed the read operation.

� write(X), which transfers the data item X from the local buffer of the transaction that executed the
write back to the database.

ACID Properties Explained

Let Ti be a transaction that transfers $50 from account A to account B. This transaction can be defined as

Ti: read(A);
A := A – 50;
write(A);
read(B);
B := B + 50;
write(B).

Let us now consider each of the ACID requirements.

12

� Consistency

The consistency requirement here is that the sum of A and B be unchanged by the execution of
the transaction.

� Atomicity

If the system crashes after write(A) operation, then the database will not be in a consistent state.
Thus, it must be ensured that either all of the operations succeed or none of the operations occur.

� Durability

In a real database system, the write operation does not necessarily result in the immediate update
of the data on the disk; the write operation may be temporarily stored in memory and executed
on the disk later.

The durability property guarantees that, once a transaction completes successfully, all the updates
that it carried out on the database persist, even if there is a system failure after the transaction
completes execution.

� Isolation

Even if the consistency and atomicity properties are ensured for each transaction, if several
transactions are executed concurrently, their operations may interleave in some undesirable way
(concurrency problem), resulting in an inconsistent state.

For example, after the transaction Ti above completes up to the write(A) operation, another
transaction Tj concurrently running reads A and B at this point and computes A + B, it will
observe an inconsistent value.

Furthermore, if Tj then performs updates on A and B based on the inconsistent values that it read,
the database may be left in an inconsistent state even after both transactions have completed.

Transaction State

A transaction must be in one of the following states:

� Active, the initial state; the transaction stays in this
state while it is executing.

� Partially committed , after the final statement has been
executed.

� Failed, after the discovery that normal execution can
no longer proceed.

� Aborted, after the transaction has been rolled back and
the database restored to its state prior to the start of the
transaction.

Two options after a transaction has been aborted:

1. Restart the transaction; can be done only if hardware or software error occurs.
2. Kill the transaction - internal logical error.

� Committed, after successful completion.

Implementation of Atomicity and Durability

The recovery-management component of a database system supports atomicity and durability by a
variety of schemes.

Figure: State diagram of a transaction.

13

The Shadow-Copy Scheme

� Assume that only one transaction is
active at a time. It also assumes that
the database is simply a file on disk.

� A pointer called db_pointer always
points to the current consistent copy
of the database.

� All updates are made on a shadow
copy of the database, and db_pointer
is made to point to the updated
shadow copy only after the
transaction reaches partial commit and all updated pages have been flushed to disk.

� In case transaction fails, old consistent copy pointed to by db_pointer can be used, and the
shadow copy can be deleted.

Drawbacks of shadow-copy scheme

1. Assumes disks do not fail

2. Useful for text editors, but extremely inefficient for large databases since executing a single
transaction requires copying the entire database.

3. Does not handle concurrent transactions.

Concurrent Executions

Advantages of Concurrent Executions

Multiple transactions are allowed to run concurrently in the system. Advantages are:

1. Improved throughput and resource utilization: I/O activity and CPU activity can operate in
parallel leading to better transaction throughput. One transaction can be using the CPU while
another is reading from or writing to the disk. The processor and disk utilization also increase;
the processor and disk spend less time idle.

2. Reduced waiting time and average response time: Short transactions need not wait behind
long ones. If the transactions are operating on different parts of the database, it is better to run
them concurrently, sharing the CPU cycle and disk accesses among them. It also reduces the
average response time - the average time for a transaction to be completed after it has been
submitted.

Concept of Concurrent Executions

Overview:

First, we need to know how to schedule the instructions in transactions for execution.

Next, we’ll see how to serial schedule transactions, i.e. how to schedule transactions so that one
transaction starts executing after another one finishes execution.

Then we’ll consider concurrent execution rather than serial execution of transactions. We’ll see that
concurrent executions might cause the isolation property to fail, i.e. the database may become inconsistent
because of concurrent executions. We’ll try to find out exactly in which cases concurrent execution fails to
maintain isolation. Then we’ll try to find out how to serial schedule transactions to maintain isolation so that
they might appear like they are concurrently executing. More elaborately, we’ll split each transaction into
pieces and then serial schedule those pieces. This is called serializability.

Figure: Shadow-copy technique for atomicity and durability.

14

Example transactions we’re going to use for explaining the concept of concurrent executions:

Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B. These transactions can
be scheduled serially in two ways – T2 after T1, and T1 after T2. The definition of the transactions and these
two possible combinations of serial schedule are depicted as follows:

Schedule

A schedule is a sequence of instructions that specify the chronological order in which instructions of
transactions are executed.

� A schedule for a set of transactions must consist of all instructions of those transactions.

� A schedule must preserve the order in which the instructions appear in each individual
transaction.

For example, in transaction T1, the instruction write(A) must appear before the instruction
read(B), in any valid schedule.

Serial Schedule

A serial schedule is a schedule which consists of a sequence of instructions from various transactions,
where the instructions belonging to one single transaction appear together in that schedule.

Thus, for a set of n transactions, there exist n! different valid serial schedules.

The Case of Concurrent Schedules

When the database system executes several transactions concurrently, the corresponding schedule no
longer needs to be serial. If two transactions are running concurrently, the operating system may execute one
transaction for a little while, then perform a context switch, execute the second transaction for a little while,
then switch back to the first transaction for some time, and so on.

Several execution sequences are possible, since the various instructions from both transactions may now
be interleaved.

In general, it is not possible to predict exactly how many instructions of a transaction will be executed
before the CPU switches to another transaction. Thus, the number of possible schedules for a set of n
transactions is much larger than n!

However, not all concurrent executions result in a correct or consistent state.

For example, schedule 3 in the next figure preserves isolation, but schedule 4 doesn’t.

We can ensure consistency of the database under concurrent execution by making that any schedule that
is executed has the same effect as a schedule that could have occurred without any concurrent execution.
That is, the schedule should, in some sense, be equivalent to a serial schedule.

Schedule 1

T1 T2
read(A);
A := A – 50;
write(A);
read(B);
B := B + 50;
write(B)

read(A);
temp := A * 0.1;
A := A – temp;
write(A);
read(B);
B := B + temp;
write(B)

Schedule 2

T1 T2

read(A);
A := A – 50;
write(A);
read(B);
B := B + 50;
write(B)

read(A);
temp := A * 0.1;
A := A – temp;
write(A);
read(B);
B := B + temp;
write(B)

15

Serializability

Since transactions are programs, it is computationally difficult to determine
exactly what operations a transaction performs and how operations of various
transactions interact. So, we ignore operations other than read and write instructions;
and we assume that, between a read(Q) and a write(Q) instruction on a data item Q, a
transaction may perform an arbitrary sequence of operations on the copy of Q that is
residing in the local buffer of the transaction. Our simplified schedules consist of only
read and write instructions as depicted in the figure beside.

In this section we discuss different forms of schedule equivalence; they lead to the
notions of conflict serializability and view serializability.

Conflict Serializability

Conflicting Instructions

We need to find out the cases when concurrent executions fail.

Let us consider a schedule S in which there are two consecutive instructions, l i and l j (i ≠ j) of
transactions Ti and Tj respectively.

If l i and l j, refer to different data item, then we can swap them without affecting the results of any
instruction in the schedule.

However, if l i and l j refer to the same data item Q, then the order of the two steps may matter. The
following four cases need to be considered:

Schedule S
Ti Tj

Ii

Ij

Schedule S
Ti Tj

read(Q)

read(Q)

Schedule S
Ti Tj

read(Q)

write(Q)

Schedule S
Ti Tj

write(Q)

read(Q)

Schedule S
Ti Tj

write(Q)

write(Q)

Order matters? No Yes Yes Yes
Why? The same value of Q

is read by Ti and Tj
regardless of the
order.

If I i comes before I j, Ti
doesn’t read the value of
Q that is written by Tj.
Else, Ti reads the value
of Q that is written by Tj.

Similar to the
previous case.

The value obtained by the next
read(Q) instruction of S is
affected, since the result of only
the latter write instruction is
preserved in the database.

Schedule S
Ti Tj

read(Q)
read(Q)

Schedule S
Ti Tj

read(Q)
write(Q)

Schedule S
Ti Tj

write(Q)
read(Q)

Schedule S
Ti Tj

write(Q)
write(Q)

Schedule 3

T1 T2
read(A);
A := A – 50;
write(A);

read(B);
B := B + 50;
write(B)

read(A);
temp := A * 0.1;
A := A – temp;
write(A);

read(B);
B := B + temp;
write(B)

Schedule 4

T1 T2
read(A);
A := A – 50;

write(A);
read(B);
B := B + 50;
write(B)

read(A);
temp := A * 0.1;
A := A – temp;
write(A);
read(B);

B := B + temp;
write(B)

 Schedule 3 – A concurrent schedule
equivalent to schedule 1.

Schedule 4 – A concurrent schedule.

Schedule 3

T1 T2
read(A)
write(A)

read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

Schedule 3 – Showing
only the read and
write instructions.

16

So, instructions l i and l j of transactions Ti and Tj conflict if and only if there exists same item Q accessed
by both l i and l j and at least one of these instructions is a write operation on Q.

Conflict Equivalence and Conflict Serializability

Let l i and l j be consecutive instructions of a schedule S. If l i and l j are instructions of different
transactions and l i and l j do not conflict, then we can swap the order of l i and l j to produce a new schedule S´.
We expect S to be equivalent of S´, since all instructions appear in the same order in both schedules except
for l i and l j, whose order does not matter.

If a schedule S can be transformed into a schedule S´ by a series of swaps of non-conflicting instructions,
we say that S and S´ are conflict equivalent.

We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule.

View Serializability

Let S and S ́be two schedules with the same set of transactions. The schedules S and S ́are said to be
view equivalent if the following three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then transaction
Ti must, in schedule S ,́ also read the initial value of Q.

2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and that value was
produced by a write (Q) operation executed by transaction Tj, then the read(Q) operation of
transaction Ti must, in schedule S´, also read the value of Q that was produced by the same
write (Q) operation in transaction Tj.

Schedule 1

T1 T2
read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Schedule 2

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Schedule 3

T1 T2
read(A)
write(A)

read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

Not view

equivalent.

Initial values of

A and B are read
by T1 in Schedule

1, but not by T1 in

Schedule 2.

View equivalent.

Initial values of

A and B are read
by T1 in both

schedules.

Schedule 3

T1 T2
read(A)
write(A)

read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

T1 T2
read(A)
write(A)

read(B)

write(B)

read(A)

write(A)

read(B)
write(B)

T1 T2
read(A)
write(A)
read(B)

write(B)

read(A)
write(A)

read(B)
write(B)

T1 T2
read(A)
write(A)
read(B)

write(B)

read(A)

write(A)

read(B)
write(B)

Schedule 6

T1 T2
read(A)
write(A)
read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

Figure: Transforming Schedule 3 – which is conflict equivalent to serial schedule 6 – into Serial Schedule 6.

17

3. For each data item Q, the transaction (if any) that performs the final write (Q) operation in
schedule S must perform the final write (Q) operation in schedule S .́

Conditions 1 and 2 ensure that each transaction reads the same values in both schedules and, therefore,
performs the same computation. Condition 3, coupled with conditions 1 and 2, ensures that both schedules
result in the same final system state.

Every conflict serializable schedule is also view serializable, but there are view serializable schedules
that are not conflict serializable. Schedule 9 is view serializable, but not conflict serializable, since every
pair of consecutive instructions conflict, and, thus, no swapping of instructions is possible.

Blind Writes

Observe that, in schedule 9, transactions T4 and T6 perform write(Q) operations without having
performed a read(Q) operation. Writes of this sort is called blind writes that appear in every view
serializable schedule that is not conflict serializable.

Recoverability

So far we have assumed that there are no transaction failures. We now need to address the effect of
transaction failures on concurrently running transactions.

If a transaction Ti fails, for whatever reason, we need to undo the effect of this transaction to ensure the
atomicity property of the transaction. In a system that allows concurrent execution, it is necessary also to
ensure that any transaction Tj that is dependent on Ti (i.e. Tj has read data written by Ti) is also aborted. To
achieve this surety, we need to place restrictions on the type of schedules permitted in the system.

Serial Schedule <T3, T4, T6>

T3 T4 T6

read(Q)

write(Q)

write(Q)

write(Q)

Schedule 9
(View equivalent to Schedule <T3, T4, T6>)

T3 T4 T6

read(Q)

write(Q)

write(Q)

write(Q)

Schedule 1

T1 T2
read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Schedule 2

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Schedule 3

T1 T2
read(A)
write(A)

read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

Not view

equivalent.

Final values of A
and B are written
by T2 in Schedule

1, but not by T2

in Schedule 2.

View equivalent.

Final values of A
and B are written
by T2 in both

schedules.

Schedule 2

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Schedule 10

T1 T2

read(A)
write(A)

read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

View equivalent.

A and B are written by T2 and

read by T1 in Schedule 2. The

same write operations by T2

and read operations by T1

have been performed in

Schedule 10.

18

Recoverable Schedules

A recoverable schedule is one where, for each pair of transactions Ti and Tj such that transaction Tj reads
a data item previously written by a transaction Ti, the commit operation of Ti appears before the commit
operation of Tj.

Cascading Rollback and Cascadeless Schedules

The phenomenon, in which a single transaction failure leads to a series of transaction rollbacks, is called
cascading rollback.

A cascadeless schedule is one where, for each pair of transactions Ti and Tj such that Tj reads a data item
previously written by Ti, the commit operation of Ti appears before the read operation of Tj.

Testing for Serializability

The problem: How to determine, given a particular schedule S, whether the schedule is serializable?

Testing for Conflict Serializability

1. Consider a schedule S of a set of transactions T1, T2, ..., Tn.

2. We construct a directed graph called precedence graph, from S. This graph consists of a pair G = (V,
E), where V is the set of vertices and E is a set of edges.

The set of vertices consists of all the transactions participating in the schedule. The set of edges
consists of all the edges Ti → Tj for which one of the three conditions holds:

a. Ti executes write(Q) before Tj executes read(Q).
b. Ti executes read(Q) before Tj executes write(Q).
c. Ti executes write(Q) before Tj executes write(Q).

If an edge Ti → Tj exists in the precedence graph, then, in any serial schedule S´ equivalent to S, Ti
must appear before Tj.

3. If the precedence graph has a cycle, then schedule S is not conflict serializable. If no cycle exists,
then it is conflict serializable.

4. If precedence graph is acyclic, the serializability order can be obtained by a topological sorting of
the graph.

Testing for View Serializability

The problem of checking if a schedule is view serializable falls in the class of NP-complete problems.
Extension of the testing for conflict serializability to test for view serializability has cost exponential in the
size of the precedence graph.

However practical algorithms that just check some sufficient conditions for view serializability can still
be used. That is, if the sufficient conditions are satisfied, the schedule is view serializable, but there may be
view serializable schedules that do not satisfy sufficient conditions.

Schedule 4

T1 T2
read(A)

write(A)
read(B)
write(B)

read(A)
write(A)

read(B)

write(B)

Schedule 2

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)

read(B)

write(B)

Schedule 1

T1 T2
read(A)
write(A)
read(B)
write(B)

read(A)
write(A)

read(B)

write(B)

T1 T2 T2 T1 T1 T2

19

Chapter 16

Concurrency Control

Objective

How to ensure/implement the serializability property of concurrent schedules?

Concurrency Schemes/Protocols

1. Lock-Based Protocols
Theme: Data items are accessed in a mutually exclusive manner.
Locking Modes:
1. Shared – Read-only
2. Exclusive – Read-Write
Locking Protocol:
When a transaction Ti requests a lock on a data item Q in a particular mode M, the lock can be
granted provided that:
1. There is no other transaction holding a lock on Q in a mode that conflicts with M. [Ensuring

serializability]
2. There is no other transaction that is waiting for a lock on Q and that made its lock request before

Ti. [Ensuring that starvation doesn’t occur]
a. Two-Phase Locking Protocol

Each transaction issues lock and unlock requests in two phases:
1. Growing Phase – May obtain locks, but may not release locks
2. Shrinking Phase – May release locks, but may not obtain any new locks
Problems:
1. Doesn’t ensure freedom from deadlock.
2. Cascading rollback might occur.

Solution:
1. Strict Two-Phase Locking Protocol

Requirements:
1. Two-phase locking
2. All exclusive-mode locks taken by a transaction be held until that transaction
commits.

2. Rigorous Two-Phase Locking Protocol
Requirements:
1. Two-phase locking
2. All locks taken by a transaction be held until that transaction commits.

3. Concurrency might become less.
Solution:
Two-Phase Locking with Lock Conversion
Requirements:
1. Two-phase locking
2. A shared lock can be upgraded to an exclusive lock in the growing phase, and an
exclusive lock can be downgraded to a shared lock in the shrinking phase.

2. Graph-Based Protocols
Theme: Construct locking protocols requiring having prior knowledge about the order in which the
database items will be accessed.

a. Tree Protocol
The only lock instruction allowed is lock-X. Each transaction Ti can lock a data item at most
once, and must observe the following rules:
1. The first lock by Ti may be on any data item.

20

2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is currently locked
by Ti.

3. Data items may be unlocked at any time.
4. A data item that has been locked and unlocked by Ti cannot subsequently be relocked by

Ti.
Advantages:
1. Ensures conflict serializability.
2. Ensures freedom from deadlock.
Problems:
1. Doesn’t ensure recoverability.
2. Doesn’t ensure cascadelessness.
How to ensure recoverability and cascadelessness:
The protocol can be modified to not permit release of exclusive locks until the end of the
transaction.

Problem with this solution:
Holding exclusive locks until the end of the transaction reduces concurrency.
Alternative solution improving concurrency, but ensuring only recoverability:
For each data item with an uncommitted write, we record which transaction performed
the last write to the data item. Whenever a transaction Ti performs a read of an
uncommitted data item, we record a commit dependency of Ti on the transaction that
performed the last write to the data item. Transaction Ti is then not permitted to commit
until the commit of all transactions on which it has a commit dependency. If any of these
transactions aborts, Ti must also be aborted.

Advantages over two-phase locking protocol:
1. Unlike two-phase locking, it’s deadlock-free, so no rollbacks are required.
2. Unlocking may occur earlier which may lead to shorter waiting times and to an increase

in concurrency.
Disadvantages:
1. In some cases, a transaction may have to lock data items that it does not access. This

additional locking results in increased locking overhead, the possibility of additional
waiting time, and a potential decrease in concurrency.

2. Without prior knowledge of what data items will need to be locked, transactions will have
to lock the root of the tree, and that can reduce concurrency greatly.

3. Timestamp-Based Protocols
Theme: Determines the serializability order by selecting an ordering among transactions in advance.
Timestamp Values:
1. W-timestamp(Q) – largest timestamp of any transaction that executed write(Q) successfully.
2. R-timestamp(Q) – largest timestamp of any transaction that executed read(Q) successfully.

a. Timestamp-Ordering Protocol
Objective: Ensures that any conflicting read and write operations are executed in timestamp
order.
Protocol Operation:
1. Suppose a transaction Ti issues a read(Q).

a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was already
overwritten.
Hence, the read operation is rejected, and Ti is rolled back.

b. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and R-
timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

2. Suppose that transaction Ti issues write (Q).
a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed

previously, and the system assumed that that value would never be produced.
Hence, the write operation is rejected, and Ti is rolled back.

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.
Hence, this write operation is rejected, and Ti is rolled back.

c. Otherwise, the write operation is executed, and W-timestamp(Q) is set to TS(Ti).

21

If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance of
either a read or write operation, the system assigns it a new timestamp and restarts it.

Advantages:

1. Ensures conflict serializability.
2. Ensures freedom from deadlock.

Disadvantages:

1. Possibility of starvation of long transactions if a sequence of conflicting short transactions
causes repeated restarting of the long transaction.
Possible Solution:
If a transaction is found to be getting restarted repeatedly, conflicting transactions need to
be temporarily blocked to enable the transaction to finish.

2. Generates schedules that are not recoverable.
Possible Solutions:
1. (Recoverability and cascadelessness)

A transaction is structured such that its writes are all performed at the end of its
processing.
All writes of a transaction form an atomic action; no transaction may execute while a
transaction is being written.
A transaction that aborts is restarted with a new timestamp.

2. (Recoverability and cascadelessness)
Limited form of locking; whereby reads of uncommitted items are postponed until the
transaction that updated the item commits.

3. (Only recoverability)
Use commit dependencies to ensure recoverability.

b. Thomas’ Write Rule
Objective: Allowing greater potential concurrency than the general timestamp ordering
protocol.
Protocol:
Exactly the same as the general timestamp ordering protocol except that in rule 2(b), the write
operation is ignored in cases where TS(Ti) ≥ R-timestamp(Q).

4. Validation-Based Protocols
Theme: In cases where a majority of transactions are read-only transactions, the rate of conflicts
among transactions may be low. It may be better to use a scheme that imposes less overhead.

a. Optimistic Concurrency Control Scheme
The validation test for transaction Tj requires that, for all Ti with TS(Ti) < TS(Tj) either one of
the following conditions holds:

1. finish(Ti) < start(Tj)
2. start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti does not

intersect with the set of data items read by Tj.
Advantage: Automatically guards against cascading rollbacks.
Disadvantage: Possibility of starvation of long transactions.

Avoiding Starvation: Conflicting transactions must be temporarily blocked to enable the
long transaction to finish.

5. Multiple Granularity 1
Theme: So far the concurrency-control schemes described used each individual data item as the unit
on which synchronization has performed. There are circumstances, where it would be advantageous
to group several data items and to treat them as one individual synchronization unit. So, a mechanism
is needed to allow the system to define multiple levels of granularities. This allows data items to be
of various sizes and define a hierarchy of data granularities, where the small granularities are nested
within larger ones.

a. Multiple Granularity Locking Protocol
Each transaction Ti can lock a node Q, using the following rules:

1 Granularity: the quality of being composed of relatively large particles.

22

1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is currently locked

by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q is currently

locked by Ti in either IX or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any node (that is, Ti is two-

phase).
6. Ti can unlock a node Q only if none of the children of Q are currently locked by Ti.
Advantages:
1. Enhances concurrency
2. Reduces lock overhead
Disadvantage: Deadlock is possible. However, there are techniques to reduce deadlock
frequency in this protocol, and also to eliminate deadlock entirely.

6. Multiversion Schemes
Theme: The concurrency-control schemes discussed thus far ensure serializability by either delaying
an operation or aborting the transaction that issued the operation. These difficulties could be avoided
if old copies of each data item were kept in a system.

a. Multiversion Timestamp-Ordering Scheme
Suppose that transaction Ti issues a read(Q) or write (Q) operation. Let Qk denote the version
of Q whose write timestamp is the largest write timestamp less than or equal to TS(Ti).
1. If transaction Ti issues a read(Q), then the value returned is the content of version Qk.
2. If transaction Ti issues a write (Q)

1. If TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back.
2. If TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten.
3. Else a new version of Q is created.

Advantage: A read request never fails and is never made to wait. In typical database systems,
where reading is a more frequent operation than is writing, this advantage may be of major
practical significance.
Disadvantages:
1. The reading of a data item also requires the updating of the R-timestamp field, resulting

in two potential disk accesses, rather than one.
2. The conflicts between transactions are resolved through rollbacks, rather than through

waits. This alternative may be expensive.
Possible Solution: Use multiversion two-phase locking.

3. Does not ensure recoverability and cascadelessness.
Possible Solution: It can be extended in the same manner as the basic timestamp-ordering
scheme to make it recoverable and cascadeless.

b. Multiversion Two-Phase Locking
Objective: Attempts to combine the advantages of multiversion concurrency control with the
advantages of two-phase locking.
Operation:
1. Read-only transactions are assigned a timestamp by reading the current value of ts-

counter before they start execution; they follow the multiversion timestamp-ordering
protocol for performing reads.

2. When an update transaction wants to read a data item, it obtains a shared lock on it, and
reads the latest version.

3. When it wants to write an item, it obtains X-lock on it; it then creates a new version of the
item and sets this version's timestamp to ∞.

4. When update transaction Ti completes, commit processing occurs:
a. Ti sets timestamp on the versions it has created to ts-counter + 1
b. Ti increments ts-counter by 1

23

Concurrency Control

What is a concurrency control scheme and why is it needed?

One of the fundamental properties of a transaction is isolation. When several transactions execute
concurrently in the database, the isolation property may no longer be preserved. To ensure this, the system
must control the interaction among the concurrent transactions and this control is achieved through one of
the variety of mechanisms called concurrency-control schemes.

The concurrency-control schemes are based on the serializability property. That is, all the schemes
ensure that the schedules are serializable schedules.

Lock-Based Protocols

One way to ensure serializability is to require that data items be accessed in a mutually exclusive
manner; that is, while one transaction is accessing a data item, no other transaction can modify that data
item.

The most common method used to implement this requirement is to allow a transaction to access a data
item only if it is currently holding a lock on that item.

Locks

A lock is a mechanism to control concurrent access to a data item.

Locking Modes

Data items can be locked in two modes:

1. Shared (S) Mode – data item can only be read. If a transaction Ti has obtained a shared-mode lock
on item Q, then Ti can read, but cannot write Q. S-lock is requested using lock-S instruction.

2. Exclusive (X) Mode – data item can be both read and written. If a transaction Ti has obtained an
exclusive-mode lock on item Q, then Ti can both read and write Q. X-lock is requested using lock-X
instruction.

How Locks Work

� A lock on a data item can be granted to a transaction if:

1. No other transaction is holding a lock on it.
2. A transaction is holding an S-lock and the requesting transaction is requesting for an S-lock.

� A transaction must hold a lock on a data item as long as it accesses that item.

Problem with this: For a transaction to unlock a data item immediately after its final access of
that data item is not always desirable, since serializability may not be ensured.

Illustration of this problem:

T1 T2
lock-X(B)

read(B)

B := B – 50
write(B)

unlock(B)

lock-X(A)

read(A)

A := A + 50
write(A)

unlock(A)

lock-S(A)

read(A)

unlock(A)

lock-S(B)

read(B)

unlock(B)

display(A+B)

1. Let, B = 200

2. Now, B = 150

3. Let, A = 100

4. B = 150

5. A + B = 250

6. A = 100

7. Now, A = 150 After T1 completes, A + B is 300. However,

T2 has already displayed the value 250!!!

24

Solution of this problem:

Delay unlocking to the end of the transaction.

� Problems with locking

1. Deadlock

Illustration of deadlock:

Solution: Coming later in this chapter.

2. Starvation

A transaction may be waiting for an X-lock on an item, while a sequence of other
transactions request and are granted an S-lock on the same item. Thus the first transaction
never makes progress and is said to be starved.

Solution:

When a transaction Ti requests a lock on a data item Q in a particular mode M, the lock can
be granted provided that:

1. There is no other transaction holding a lock on Q in a mode that conflicts2 with M.
2. There is no other transaction that is waiting for a lock on Q and that made its lock request

before Ti.

The Two-Phase Locking Protocol

This protocol requires that each transaction issue lock and unlock requests in two phases:

1. Growing phase
• Transaction may obtain locks
• Transaction may not release any lock

2. Shrinking phase
• Transaction may release locks
• Transaction may not obtain any new locks

Initially, a transaction is in the growing phase. The transaction acquires locks as needed.
Once the transaction releases a lock, it enters the shrinking phase, and it can issue no more
lock requests.

Example:

Transaction T3 on the right side is two-phase.

Note that the unlock instructions do not need to appear at the end of the transaction. For example, in T3,
we could move the unlock(B) instruction to just after the lock-X(A) instruction.

2 In the lock-compatibility matrix below, all the modes other than the S-S are conflicting:

 S X
S true false
X false false

T1 T2
lock-X(B)

read(B)

B := B – 50
write(B)

lock-X(A)

lock-S(A)

read(A)

lock-S(B)

1. T1 locks B

2. T2 locks A

3. T2 requests to lock B.

However, as T1 didn’t unlock

B, T2 is made to wait.

4. T1 requests to lock A.

However, as T2 didn’t

unlock A, T1 is made

to wait. DEADLOCK!!!

T3
lock-X(B)

read(B)

B := B – 50
write(B)

lock-X(A)

read(A)

A := A + 50
write(A)

unlock(B)

unlock(A)

25

Problems with two-phase locking protocol:

1. Deadlock is not ensured.

The transactions T1 and T2 are in two-phase, but not deadlock-free as illustrated in the previous
illustration of deadlock.

Solution: see deadlock handling later in this chapter.

2. Cascading rollback may occur.

Illustration of this problem:

Solution:

The two-phase locking protocol may be modified in any of the following ways:

1. Strict two-phase locking protocol: requires not only that locking be two-phase, but also that all
exclusive-mode locks taken by a transaction be held until that transaction commits.

This requirement ensures that any data written by an uncommitted transaction are locked in
exclusive mode until the transaction commits, preventing any other transaction from reading the
data.

2. Rigorous two-phase locking protocol: requires not only that locking be two-phase, but also that
all locks taken by a transaction be held until that transaction commits.

3. Concurrency might become less.

Illustration of this problem:

Solution:

Allow lock conversion.

� We shall provide a mechanism for upgrading a shared lock to an exclusive lock, and
downgrading an exclusive lock to a shared lock.

� However, upgrading can take place only in the growing phase, whereas downgrading can take
place only in the shrinking phase.

T8 T9
read(a1)

read(a2)

…

read(an)

write(a1)

read(a1)

read(a2)

display(a1+a2)

AsT8 is writing a1, so it must X-lock a1 before
read(a1) in two-phase locking.

However, if T8 could initially lock a1 in shared
mode and then could later change the lock to

exclusive mode, we could get more

concurrency, since T8 and T9 could access a1
and a2 simultaneously.

T5 T6 T7
lock-X(A)

read(A)

lock-S(B)

read(B)

write(A)

unlock(A)

lock-X(A)

read(A)

write(A)

unlock(A)

lock-X(A)

read(A)

Failure ofT5 after this step leads

to cascading rollback of T6 and T7.

26

� Note that a transaction attempting to upgrade a lock on an item Q may be forced to wait. This
enforced wait occurs if Q is currently locked by another transaction in shared mode.

� Further, if exclusive locks are held until the end of the transaction, the schedules are cascadeless.

Example:

Use of two-phase locking protocol:

Strict two-phase locking and rigorous two-phase locking (with lock conversions) are used extensively in
commercial database systems.

Graph-Based Protocols

If we have prior knowledge about the order in which the database items will be accessed, it is possible to
construct locking protocols that are not two phase but ensures conflict serializability.

To acquire such prior knowledge, we impose a partial ordering → on the set D = {d1, d2, .., dh} of all
data items. If di → dj, then any transaction accessing both di and dj must access di before accessing dj. This
partial ordering may be the result of either the logical or the physical organization of the data, or it may be
imposed solely for the purpose of concurrency control.

The Tree Protocol

In the tree protocol, the only lock instruction allowed is lock-X. Each transaction Ti can lock a data item
at most once, and must observe the following rules:

1. The first lock by Ti may be on any data item.
2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is currently locked by Ti.
3. Data items may be unlocked at any time.
4. A data item that has been locked and unlocked by Ti cannot subsequently be relocked by Ti.

Example:

T10 T11 T12 T13
lock-X(B)

lock-X(E)

lock-X(D)

unlock(B)

unlock(E)

lock-X(G)

unlock(D)

unlock(G)

lock-X(D)

lock-X(H)

unlock(D)

unlock(H)

lock-X(B)

lock-X(E)

unlock(E)

unlock(B)

lock-X(D)

lock-X(H)

unlock(D)

unlock(H)

T8 T9
lock-S(a1)

lock-S(a2)

lock-S(a3)

lock-S(a4)

lock-S(an)

upgrade(a1)

lock-S(a1)

lock-S(a2)

unlock(a1)

unlock(a2)

27

Problem with Tree Protocol:

The tree protocol does not ensure recoverability and cascadelessness.

Solution:

To ensure recoverability and cascadelessness, the protocol can be modified to not permit release of
exclusive locks until the end of the transaction.

Problem with this solution:

Holding exclusive locks until the end of the transaction reduces concurrency.

Alternate solution improving concurrency, but ensuring only recoverability:

For each data item with an uncommitted write, we record which transaction performed the last write to
the data item. Whenever a transaction Ti performs a read of an uncommitted data item, we record a commit
dependency of Ti on the transaction that performed the last write to the data item. Transaction Ti is then not
permitted to commit until the commit of all transactions on which it has a commit dependency. If any of
these transactions aborts, Ti must also be aborted.

Advantages (Over Two-Phase Locking Protocol):

1. Unlike two-phase locking, it’s deadlock-free, so no rollbacks are required.

2. Unlocking may occur earlier which may lead to shorter waiting times and to an increase in
concurrency.

Disadvantages:

1. In some cases, a transaction may have to lock data items that it does not access. This additional
locking results in increased locking overhead, the possibility of additional waiting time, and a
potential decrease in concurrency.

For example, a transaction that needs to access data items A and J in the database graph depicted
previously must lock not only A and J, but also data items B, D and H.

2. Without prior knowledge of what data items will need to be locked, transactions will have to lock the
root of the tree, and that can reduce concurrency greatly.

Comments:

Schedules not possible under two-phase locking are possible under tree protocol, and vice versa.

Timestamp-Based Protocols

Another method for determining the serializability order is to select an ordering among transactions in
advance using timestamp-ordering.

Timestamps

Each transaction is assigned a timestamp when it enters the system.

If an old transaction Ti has timestamp TS(Ti), a new transaction Tj is assigned timestamp TS(Tj) such that
TS(Ti) < TS(Tj).

How a timestamp can be generated:

1. Value of system clock – A transaction’s timestamp is equal to the value of the clock when it enters
the system.

2. Logical counter – It is incremented after a new timestamp has been assigned. A transaction’s
timestamp is equal to the value of the counter when it enters the system.

Basic Concept

The timestamps determine the serializability order. Thus, if TS(Ti) < TS(Tj), then the system must ensure
that the produced schedule is equivalent to a serial schedule in which Ti appears before Tj.

28

To implement this, the protocol maintains for each data Q two timestamp values:

1. W-timestamp(Q) – largest timestamp of any transaction that executed write(Q) successfully.
2. R-timestamp(Q) – largest timestamp of any transaction that executed read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instructions are executed.

The Timestamp Ordering Protocol

The timestamp ordering protocol ensures that any conflicting read and write operations are executed in
timestamp order.

1. Suppose a transaction Ti issues a read(Q).

a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was already overwritten.
Hence, the read operation is rejected, and Ti is rolled back.

b. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set
to max(R-timestamp(Q), TS(Ti)).

2. Suppose that transaction Ti issues write (Q).

a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously,
and the system assumed that that value would never be produced.

Hence, the write operation is rejected, and Ti is rolled back.

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.
Hence, this write operation is rejected, and Ti is rolled back.

c. Otherwise, the write operation is executed, and W-timestamp(Q) is set to TS(Ti).

Ti Ti + 1
Read(Q)

…

write(Q)

…

write(Q)

…

Rollbacked

Rejected

Ti is attempting to write an obsolete value of Q

If TS(Ti) < W-timestamp(Q) then

3. Reject write(Q)

4. Rollback (Ti)

Ti Ti + 1

write(Q)

read(Q)

Rollbacked

Rejected

Ti + 1 needed value of Q and assumed that Q would never be produced

If TS(Ti) < R-timestamp(Q) then

1. Reject write(Q)

2. Rollback (Ti)

Case 1:

TS(Ti) = W-timestamp(Q)

∴ R-timestamp(Q) = TS(Ti)

Ti
…

write(Q)

…

read(Q)

Ti - 1 Ti
write(Q)

read(Q)

Case 2:

TS(Ti) > W-timestamp(Q)

∴ R-timestamp(Q) = TS(Ti)

Ti - 1 Ti Ti + 1

write(Q)

read(Q)

read(Q)

Case 3:

TS(Ti) > W-timestamp(Q)

∴ R-timestamp(Q) = R-timestamp(Q)

Ti Ti + 1

read(Q)

write(Q)

Rollbacked

Rejected

Ti would read a value of Q that’s already overwritten

If TS(Ti) < W-timestamp(Q) then

1. Reject read(Q)

2. Rollback (Ti)

29

If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance of either a read
or write operation, the system assigns it a new timestamp and restarts it.

Advantages:

1. Ensures conflict serializability.
2. Ensures freedom from deadlock as no transaction ever waits.

Disadvantages:

1. Possibility of starvation of long transactions if a sequence of conflicting short transactions causes
repeated restarting of the long transaction.

Solution:

If a transaction is found to be getting restarted repeatedly, conflicting transactions need to be
temporarily blocked to enable the transaction to finish.

2. Generates schedules that are not recoverable and may require cascading rollbacks.

Possible Solutions:

1. Ensuring both recoverability and cascadelessness

A transaction is structured such that its writes are all performed at the end of its processing.

All writes of a transaction form an atomic action; no transaction may execute while a
transaction is being written.

A transaction that aborts is restarted with a new timestamp.

2. Ensuring both recoverability and cascadelessness

Limited form of locking; whereby reads of uncommitted items are postponed until the
transaction that updated the item commits.

3. Ensuring only recoverability

Use commit dependencies to ensure recoverability.

Thomas’ Write Rule

Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored
under certain circumstances, thus allowing greater potential concurrency.

The timestamp ordering protocol requires that Ti be rolled back if Ti issues write(Q)
and TS(Ti) < W-timestamp(Q). However, in Thomas’ Write Rule, in those cases where
TS(Ti) ≥ R-timestamp(Q), we ignore the obsolete write.

Thomas' Write Rule allows greater potential concurrency. This change makes it possible to generate
some serializable schedules that are not possible under the other protocols.

Validation-Based Protocols

In cases where a majority of transactions are read-only transactions, the rate of conflicts among
transactions may be low. It may be better to use a scheme that imposes less overhead.

Phases of a Transaction

A difficulty in reducing the overhead is to know in advance which transactions will be involved in a
conflict. To gain this knowledge, a scheme for monitoring the system is needed.

We assume that execution of transaction Ti is done in two or three different phases in its lifetime,
depending on whether it is a read-only or an update transaction. The phases are, in order:

1. Read and execution phase: The Transaction Ti reads the value of various data items and store them
in variables local to Ti. It performs all write operations on temporary local variables, without updates
of the actual database.

Ti Ti + 1
read(Q)

write(Q)

write(Q)

30

2. Validation phase: Transaction Ti performs a validation test to determine if local variables can be
written to database without violating serializability.

3. Write phase: If Ti is validated, the updates are applied to the actual database; otherwise, Ti is rolled
back.

The Validation Test

To perform the validation test, it is needed to know when the various phases of transaction Ti took place.
It is associated with 3 timestamps:

1. Start(Ti): the time when Ti started its execution.
2. Validation(Ti): the time when Ti entered its validation phase.
3. Finish(Ti): the time when Ti finished its write phase.

Serializability order is determined by timestamp given at validation time to increase concurrency. Thus,
TS(Ti) = Validation(Ti).

The validation test for transaction Tj requires that, for all Ti with TS(Ti) < TS(Tj) either one of the
following conditions holds:

1. finish(Ti) < start(Tj).

Since Ti completes its execution before Tj started, the serializability order is indeed maintained.

2. start(Tj) < finish(Ti) < validation(Tj). That is, the set of data items written by Ti does not intersect
with the set of data items read by Tj, and Ti completes its write phase before Tj starts its validation
phase.

This condition ensures that the writes of Ti and Tj do not overlap. Since the writes of Ti do not affect
the read of Tj, and since Tj cannot affect the read of Ti, the serializability order is indeed maintained.

Example:

Advantage:

Automatically guards against cascading rollbacks, since the actual writes take place only after the
transaction issuing the write has committed.

Problem:

Possibility of starvation of long transactions, due to a sequence of conflicting short transactions that
cause repeated restarts of the long transaction.

Solution: Conflicting transactions must be temporarily blocked to enable the long transaction to finish.

Comments:

The validation scheme is also called as optimistic concurrency control since transaction executes fully
in the hope that all will go well during validation. In contrast, locking and timestamp ordering are
pessimistic in that they force a wait or a rollback whenever a conflict is detected, even though there is a
chance that the schedule may be conflict serializable.

T14 T15
read(B)

read(A)

<validate>

display(A + B)

read(B)

B := B – 50
read(A)

A := A + 50

<validate>

write(B)

write(A)

31

Multiple Granularity

The Problem

In the concurrency-control schemes described thus far, we have used each individual data item as the
unit on which synchronization is performed. There are circumstances, however, where it would be
advantageous to group several data items, and to treat them as one individual synchronization unit.

For example, if a transaction Ti needs to access the entire database, and a locking protocol is used, then
Ti must lock each item in the database. Clearly, executing these locks is time consuming. It would be better
if Ti could issue a single lock request to lock the entire database. On the other hand, if transaction Tj needs
to access only a few data items, it should not be required to lock the entire database, since otherwise
concurrency is lost.

Solution

What is needed is a mechanism to allow the system to define multiple levels of granularity. We can
make one by allowing data items to be of various sizes and defining a hierarchy of data granularities, where
the small granularities are nested within larger ones. Such a hierarchy can be represented graphically as a
tree.

Difference between the Multiple Granularity tree and the tree in Tree Protocol

A nonleaf node of the multiple-granularity tree represents the data associated with its descendants. In the
tree protocol, each node is an independent data item.

Illustration of the Protocol

Locking Nodes

- Each node in the tree can be locked
individually.

- There are two lock modes – shared
and exclusive.

- When a transaction locks a node, in
either shared or exclusive mode, the
transaction also has implicitly locked all the descendants of that node in the same lock mode.

For example, if transaction Ti gets an explicit lock on file Fb of the above figure in exclusive mode,
then it has an implicit lock in exclusive mode all the records belonging to that file. It does not need to
lock the individual records of Fb explicitly.

Problem 1: How the system would determine whether a transaction can lock a node?

Suppose that transaction Tj wishes to lock record rb6 of file Fb. Since Ti has locked Fb explicitly, it
follows that rb6 is also locked (implicitly). But, when Tj issues a lock request for rb6, rb6 is not explicitly
locked! How does the system determine whether Tj can lock rb6?

Solution to Problem 1

Tj must traverse the tree from the root to record rb6. If any node in that path is locked in an incompatible
mode, then Tj must be delayed.

Problem 2: How does the system determine if the root node can be locked?

Suppose now that transaction Tk wishes to lock the entire database. To do so, it simply must lock the root
of the hierarchy. Note, however, that Tk should not succeed in locking the root node, since Ti is currently
holding a lock on part of the tree (specifically, on file Fb). But how does the system determine if the root
node can be locked?

A Possible Solution to Problem 2

Tk should search the entire tree.

32

Problem with this solution: This solution defeats the whole purpose of the multiple-granularity locking
scheme.

More Efficient Solution to Problem 2

Introduce a new class of lock modes, called intention lock modes.

- If a node is locked in an intention mode, explicit locking is being done at a lower level of the tree
(that is, at a finer granularity).

- Intention locks are put on all the ancestors of a node before that node is locked explicitly.

- A transaction wishing to lock a node — say, Q — must traverse a path in the tree from the root to Q.
While traversing the tree, the transaction locks the various nodes in an intention mode.

Thus, a transaction does not need to search the entire tree to determine whether it can lock a node
successfully.

Different Types of Intention Mode Locks

1. Intention-Shared (IS) Mode: If a node is locked in intention-shared (IS) mode, explicit locking is
being done at a lower level of the tree, but with only shared-mode locks.

2. Intention-Exclusive (IX) Mode: If a node is locked in intention-exclusive (IX) mode, then explicit
locking is being done at a lower level, with exclusive-mode or shared-mode locks.

3. Shared and Intention-Exclusive (SIX) mode: If a node is locked in shared and intention-exclusive
(SIX) mode, the subtree rooted by that node is locked explicitly in shared mode, and that explicit
locking is being done at a lower level with exclusive-mode locks.

Compatibility Function for the Various Lock Modes

The Multiple-Granularity Locking Protocol

Each transaction Ti can lock a node Q by following these rules:

1. It must observe the lock-compatibility function of various lock modes.

2. It must lock the root of the tree first, and can lock it in any mode.

3. It can lock a node Q in S or IS mode only if it currently has the parent of Q locked in either IX or
IS mode.

4. It can lock a node Q in X, SIX, or IX mode only if it currently has the parent of Q locked in
either IX or SIX mode.

5. It can lock a node only if it has not previously unlocked any node (that is, Ti is two phase).

6. It can unlock a node Q only if it currently has none of the children of Q locked.

Observe that the multiple-granularity protocol requires that locks be acquired in top-down (root-to-leaf)
order, whereas locks must be released in bottom-up (leaf-to-root) order.

Examples

Consider the following four transactions.

Note that transactions T16, T18, and T19 can access the database concurrently. Transaction T17 can execute
concurrently with T16, but not with either T20 or T21.

•

•

•

•

Advantages

1. Ensures serializability
2. Enhances concurrency and reduces lock overhead.
3. Particularly useful in applications that include a mix of

a. Short transactions that access only a few data items
b. Long transactions that

Disadvantage

Deadlock is possible in the protocol that we have, as it is in the two

T19
read(DB)

T18
read(Fa)

T17
write(ra1)

T16
read(ra2)

33

Enhances concurrency and reduces lock overhead.
applications that include a mix of

Short transactions that access only a few data items
 produce reports from an entire file or set of files

Deadlock is possible in the protocol that we have, as it is in the two-phase locking protocol.

produce reports from an entire file or set of files

phase locking protocol.

34

However, there are techniques to reduce deadlock frequency in the multiple-granularity protocol, and
also to eliminate deadlock entirely.

Deadlock Handling

A system is said to be in a deadlock state if there exists a set of transactions such that every transaction
in the set is waiting for another transaction in the set. More precisely, there exists a set of waiting
transactions {T0 , T1 , . . ., Tn} such that T0 is waiting for a data item that T1 holds, and T1 is waiting for a
data item that T2 holds, and …, and Tn-1 is waiting for a data item that Tn holds, and Tn is waiting for a data
item that T0 holds. None of the transactions can make progress in such a situation.

Principal Methods for Dealing with Deadlock Problem

1. We can use a deadlock prevention protocol to ensure that the system will never enter a deadlock
state.

2. Alternatively, we can allow the system to enter a deadlock state, and then try to recover by using a
deadlock detection and deadlock recovery scheme.

As we shall see, both methods may result in transaction rollback.

Prevention is commonly used if the probability that the system would enter a deadlock state is relatively
high; otherwise, detection and recovery are more efficient.

Deadlock Prevention

There are two approaches to deadlock prevention:

1. Ensuring that no cycle waits can occur by ordering the requests for locks, or requiring all locks
to be acquired together.

Different Schemes for this approach:

1. Each transaction locks all its data items before it begins execution. Moreover, either all are
locked in one step or none are locked.

Disadvantages:

1. It is often hard to predict, before the transaction begins, what data items need to be locked.
2. Data-item utilization may be very low, since many of the data items may be locked but

unused for a long time.

2. Impose an ordering of all data items, and a transaction is required to lock data items only in a
sequence consistent with the ordering.

We have seen one such scheme in the tree protocol, which uses a partial ordering of data items.

3. A variation of the above approach is to use a total order of data items, in conjunction with two-
phase locking. Once a transaction has locked a particular item, it cannot request locks on items
that precede that item in the ordering.

This scheme is easy to implement, as long as the set of data items accessed by a transaction is
known when the transaction starts execution.

2. Using preemption and transaction rollbacks.

- In preemption, when a transaction T2 requests a lock that transaction T1 holds, the lock granted to
T1 may be preempted by rolling back of T1, and granting of the lock to T2.

- To control the preemption, we assign a unique timestamp to each transaction. The system uses
these timestamps only to decide whether a transaction should wait or roll back.

- If a transaction is rolled back, it retains its old timestamp when restarted.

- Locking is still used for concurrency control.

35

Deadlock Prevention Schemes using Timestamps

1. Wait-Die Scheme [Non-Preemptive Technique]

When transaction Ti requests a data item currently held by Tj, Ti is allowed to wait only if it has a
timestamp smaller than that of Tj (i.e. Ti is older than Tj). Otherwise, Ti is rolled back (dies).

For example, suppose that transactions T22, T23 and T24 have timestamps 5, 10 and 15
respectively. If T22 requests a data item held by T23, then T22 will wait. If T24 requests a data item
held by T23, then T24 will be rolled back.

2. Wound-Wait Scheme [Preemptive Technique]

This scheme is a counterpart to the wait-die scheme.

When transaction Ti requests a data item currently held by Tj, Ti is allowed to wait only if it has a
timestamp larger than that of Tj (i.e. Ti is younger than Tj). Otherwise, Tj is rolled back (Tj is
wounded by Ti).

Returning to our example, with transactions T22, T23 and T24, if T22 requests a data item held by
T23, then the data item will be preempted from T23, and T23 will be rolled back. If T24 requests a
data item held by T23, then T24 will wait.

Proof That Both Wait-Die and Wound-Wait Schemes Avoid Starvation

At any time, there is a transaction with the smallest timestamp. This transaction cannot be
required to roll back in either scheme. Since timestamps always increase, and since transactions are
not assigned new timestamps when they are rolled back, a transaction that is rolled back repeatedly
will eventually have the smallest timestamp, at which point it will not be rolled back again.

Differences Between Wait-Die and Wound-Wait Schemes

1. In the wait–die scheme, an older transaction must wait for a younger one to release its data item.
Thus, the older the transaction gets, the more it tends to wait.

By contrast, in the wound–wait scheme, an older transaction never waits for a younger
transaction.

2. In the wait–die scheme, if a transaction Ti dies and is rolled back because it requested a data item
held by transaction Tj, then Ti may reissue the same sequence of requests when it is restarted. If
the data item is still held by Tj, then Ti will die again. Thus, Ti may die several times before
acquiring the needed data item.

Contrast this series of events with what happens in the wound–wait scheme. Transaction Ti is
wounded and rolled back because Tj requested a data item that it holds. When Ti is restarted and
requests the data item now being held by Tj , Ti waits. Thus, there may be fewer rollbacks in the
wound–wait scheme.

Major Problem with Both of the Schemes: Unnecessary rollbacks may occur.

Timeout-Based Scheme

- In this approach, a transaction that has requested a lock waits for at most a specified amount of time.
If the lock has not been granted within that time, the transaction is said to time out, and it rolls itself
back and restarts.

- If there was in fact a deadlock, one or more transactions involved in the deadlock will time out and
roll back, allowing the others to proceed.

T22 T23 T24
Request

Wait

Request

Rollback

T22 T23 T24
Request

Rollback

Request

Wait

Wait -Die Scheme Wound-Wait Scheme

36

- This scheme falls somewhere between deadlock prevention, where a deadlock will never occur, and
deadlock detection and recovery.

Advantages

1. Particularly easy to implement
2. Works well if transactions are short and if long waits are likely to be due to deadlocks.

Disadvantages

1. In general, it is hard to decide how long a transaction must wait before timing out. Too long a wait
results in unnecessary delays once a deadlock has occurred. Too short a wait results in transaction
rollback even when there is no deadlock, leading to wasted resources.

2. Starvation is also a possibility with this scheme.

Deadlock Detection

The Wait-For Graph

Deadlocks can be described precisely in terms of a directed graph called a wait-for graph.

This graph consists of a pair G = (V, E), where

V is a set of vertices which consists of all the transactions in the system

E is a set of edges where each element is an ordered pair Ti → Tj.

If Ti → Tj is in E, then there is a directed edge from transaction Ti to Tj, implying that transaction Ti is
waiting for transaction Tj to release a data item that it needs.

When transaction Ti requests a data item currently being held by transaction Tj, then the edge Ti → Tj is
inserted in the wait-for graph. This edge is removed only when transaction Tj is no longer holding a data
item needed by transaction Ti.

A deadlock exists in the system if and only if the wait-for graph contains a cycle. Each transaction
involved in the cycle is said to be deadlocked. To detect deadlocks, the system needs to maintain the wait-
for graph, and periodically to invoke an algorithm that searches for a cycle in the graph.

Example

When Should the Detection Algorithm be Invoked?

The answer depends on two factors:

1. How often does a deadlock occur?
2. How many transactions will be affected by the deadlock?

If deadlocks occur frequently, then the detection algorithm should be invoked more frequently
than usual. Data items allocated to deadlocked transactions will be unavailable to other transactions until the
deadlock can be broken. In addition, the number of cycles in the graph may also grow. In the worst case, we
would invoke the detection algorithm every time a request for allocation could not be granted immediately.

Deadlock Recovery

When a detection algorithm determines that a deadlock exists, the system must recover from the
deadlock. The most common solution is to roll back one or more transactions to break the deadlock. Three
actions need to be taken:

37

1. Selection of a Victim

Given a set of deadlocked transactions, we must determine which transaction (or transactions) to
roll back to break the deadlock. We should roll back those transactions that will incur the minimum
cost. Unfortunately, the term minimum cost is not a precise one. Many factors may determine the
cost of a rollback, including

a. How long the transaction has computed, and how much longer the transaction will compute
before it completes its designated task.

b. How many data items the transaction has used.
c. How many more data items the transaction needs for it to complete.
d. How many transactions will be involved in the rollback.

2. Rollback

Once we have decided that a particular transaction must be rolled back, we must determine how
far this transaction should be rolled back.

1. Total Rollback: Abort transaction and then restart it.
2. Partial Rollback: Roll back the transaction only as far as necessary to break the deadlock.

3. Starvation

In a system where the selection of victims is based primarily on cost factors, it may happen that
the same transaction is always picked as a victim. As a result, this transaction never completes its
designated task, thus there is starvation. We must ensure that transaction can be picked as a victim
only a (small) finite number of times. The most common solution is to include the number of
rollbacks in the cost factor.

