COMPILERS

CHAPTER 4: SYNTAX ANALYSIS ..ottt e e e e e e e e e e e s e et e e e e e et e enaesneesanae 1

THEORIES .. et etit i ee it e e e ettt ettt e et e et et eaee et e et e e e et eeeaa e saa e e taseeeaa s anaeesasaeean s san e et aesannsesnes st e ssnnnsessaaesstneeennessnnaaernss 1
(= 1o] = OSSPSR 1
CHAPTER 5: SYNTAX-DIRECTED TRANSLATIONSot ittt ettt e e e e e e e e e e ettt e e e e e e e e e e e e seraab e 5
THEORIES ..t tttteeeeteeeeeteeeeetttt i eeeteseeeeeeseeeeeeee e s e te b e e seseeeaeeese s s st st e a e e esaeaaaseeasasssss st s st asa s aaaeeaessesssssesssnnnnnsn s seeeeesessssrsrreranns 5
EXERCISES. ..uttttutieieeeeeeeeteeetetet et e e e e eeeeeeeeeeete e e e et e et et aesaeeeeeeeesssse b e baaa e saaaaesaaeaesesess st st abaan e eseeeeesesessss s s annnnaaann e aaeeaeseeeerrrrres 6
CHAPTER 6: INTERMEDIATE-CODE GENERATION .. .coiiiit oottt ettt e e s e e e e e e e e e e e e ae bbb aeeeeeaeaeeeenes 8
THEORIES ..t tttteeeeteeeeeteeeeetttt i eeeteseeeeeeseeeeeeee e s e te b e e seseeeaeeese s s st st e a e e esaeaaaseeasasssss st s st asa s aaaeeaessesssssesssnnnnnsn s seeeeesessssrsrreranns 8
THEORIES& EXERCISES(TYPE CHECKING) ..vvvtttttttittieaeeeeesssiiasssssassssstasteerseseasesasssesssssaaasssssssssssssssssssseeeesensnnnanssssnsssssssnsnns 9
EXERCISES(OTHERS) ..uuuuuttttttttteereeeereeteeaaeaaasesssssaaaasnssssseeteetaeaeaeeasessnssnnaassssssssssseeeeaeeeeseessnsannassssssssnssnsseesrerrreereeemmnnns 10
CHAPTER 8: CODE GENERATIONcoiittittttie et ettt eie s et e e e e e ee et eeat et s e eseeeaaaaaeeetteeae s teeeeeeeeseeersrerran s raaeaeseeas 15
THEORIES ...ttt ettt ettt ettt e ettt e e e et te e e eeaee et e et e e et e e et eeeaa s st eeesa s amanaaesaaeesasaeaanassan e stanaesanssssnnassanaasssnssssnnesstnaarnnsaees 15
(= Lo] = ORI 17
CHAPTER 9: MACHINE-INDEPENDENT OPTIMIZATION ..o oottt et e e s e e e e e e e e e e eeeeaaaaaaas 20
THEORIES ...ttt ettt ettt et e et e e et ettt e e et eeaee et e e eaee et eeataeeeaa s st eeesa s sanaaassaaeesasaeeanassan e stanassanssssnnassanaasssnssssnnasstnaarnnsaees 20

= =01 1] =TT 22

4.1 What are the error recovery strategies generatlused by parser? 2006. Marks: 2

1. Panic-Mode Recovery
2. Phrase-Level Recovery
3. Error Productions
4. Global Correction

4.2 What is ambiguous grammar? Ip-course 1, 2008-2009. Marks:]1
A grammar is ambiguous if it can have more than paese tree generating a given string of
terminals.
4.3 What is meant by left recursion in a grammar?lp-course 2005-2006. Marks:]1

A grammar is left recursive if it has a nontermidasuch that there is a derivatiegn A for
some string . For exampleA A |

4.4 What is the problem with a production with an mmediate left-recursion in a grammar?
How can we eliminate left recursion? 2005. Marks: 3

A production with an immediate left-recursion caause recursive-descent and top-down
predictive parsers to loop forever.

Removing immediate left recursion:

FA Ax|Az|..|Amn]l o] 2]...]n
Then we can rewrite the grammar as below:
A Al A|..] A

A AL AL eAl

4.5 Can we create LR parser table from an ambiguougrammar? When or why would one
prefer to use ambiguous grammar? Justify your answewith example. [2008, In-course 1, 2008-

2009. Marks: 1 + B

4.6 Give an unambiguous grammar that is not LR(1)[2006. Marks: 3

4.7 Define LL(k) and LR(k) grammars. Write down the basic properties of LL(1) and LR(1)
grammars. [2007. Marks: 2 + 4

4.8 What is a synchronizing set? Write down the proedure for panic mode error recovery in
LL parsing. [2005. Marks: 4

4.9 What is the difference between LR(0) grammar athSLR grammar? [2008. Marks: 2

4.10 What isiT -production? Howi1 -productions are handled in bottom-up parsing? Exphin it
from the grammar below: [2007. Marks: 4
S aB
B 11 |x
411 What are inadequate states? How do we try to resadvthe problem associated with such
states in SLR and LR(1) parsing?2005. Marks: 4

412 What do you understand by shift-reduce and reduceeduce conflicts? Why these conflicts
arise? Explain rules for resolving these conflicten parsing table. [2007. Marks:

4.13 Show that the construction of an LALR parser by meging LR(1) item sets with common
core of a LR(1) grammar will not introduce any shit/reduce conflict. [2004. Marks: 4

414 Write down the general structure of LR parsers. 003. Marks: 4

4.15 What does the characters L, A, L, R and 1 in the mae LALR(1) parser stand for? [In-
course. Marks: 1

4.16 Which of the LL(1), SLR(1) and LR(1) can parse thdollowing grammar? Why? [In-course.

Marks: 2.9
S A|B
A Dbjc
B cl|a
4.17 What does a lexical analyzer do when prefixes of ¢hinput string matches more than one

patterns? [2007, 2004. Marks: R

4.1 Consider the grammar:
S (L]a
L LS|S

I. Find parse trees for the sentencs (a, (a,a)) and,(&@,a),(a,a))).
il. Construct a leftmost derivation for each of the setences in part (i).
i Construct a rightmost derivation for each of the setences in part (i). R003. Marks: §

4.2 Eliminate ambiguities for the grammar: In-course 1, 2008-2009. Marks:]5
E E+E|E*E|(E)|id
4.3 Eliminate left recursion from the following granmar:
S SX|SSb|XS|a
X Xb|Sal|b
When does the above algorithm of eliminating leftecursion fail? [2008. Marks: 3 + P
4.4 Consider the grammar with the set of terminals:
S (Mlalb
L LS|S
0] Remove left-recursion from the grammar and find theFirst and Follow sets for each

non-terminal of the modified grammar.
(i) Write down a recursive descent parser (i.e. parsinglgorithm) for the modified
grammar. [2007. Marks: 5 +

4.5 Consider the following grammar for arithmetic expressions.

E E+T|E-T|T
T T*F|T/F|F
F (E)|id

I. Write the above grammar eliminating immediate leftrecursion.
i. Draw the simplified transition diagram for the grammar. [2005. Marks: 4

4.6 Consider the grammar with the set of terminalg (,), , , a, b}:
S (L)|al|b
L LS|S

a. Remove left-recursion from the grammar and find theFirst(1) and Follow(1) sets for
each non-terminal of the modified grammar.

b. Construct the operator precedence relation table fothe grammar.

c. Find the right-most derivation in reverse for the g$ring (a, (b, a)) and indicate the handles
at each step.

d. Draw the transition diagram of the grammar and simgify it (if possible). [2004. Marks: 3

2

4.7

4.8

4.9

4.10

411

412

4.13

4.14

+3+4+3+3
e. Write down a recursive descent parser for the modiéd grammar. [In-course 2005-2006.
Marks: 5]

Left factor the following grammar: [2003. Marks: 3
A AabcA | Aad | AabA | Ad

Build an LL parsing table for the following grammar:

S (Lfa
L LS|S

Is this an LL(1) grammar? Justify your answer. 2008. Marks: 5 + 2
Show that the following grammar is SLR but noLR(0). [2008. Marks: 6

S A
A aA
A a

With LALR (lookahead LR) parsing, we can reduce thenumber of states in an LR(1) parser.
Justify the above statement using the following gramar: [2008. Marks: §

S XX
X aX
X b
Consider the grammar: S aSbS | bSaS | 1T . Show that the grammar is ambiguous

by constructing two different left most derivationsfor a string. [2006. Marks: 3

Find the LL(1) parsing table for the following grammar. Show the first and follow sets for
the non-terminals. In-course. Marks: 4 + 4

S aS|Ab
A Xyz| 1l
X ¢sS| 1
Y ds| 11
Z eS

Give a grammar with the following first and follow sets. Your grammar should have no
epsilon productions. The non-terminals are X, Y, Zand the terminals are a, b, c, d, elfi-course.
Marks: 6]

X Y Z |la| b C d | elF
First b,d,f|b,d|c,e|la| b C d | elf

Follow $ c,e| al| §b,d|c,e|lc,elal$

Consider the following grammar:

X YaYb | Zbza
Y b
z al|l 1
I. Give the parse tree for the string “babb”.
il. Show the sentential forms of each stage in a top-da leftmost derivation of “baa”.
iii. Show the sentential forms of each stage in a botteap rightmost derivation of
“babb”.

iv. Work out the following sets: FIRST(X), FOLLOW(X), FOLLOW(Y). [2006. Marks: 2
+3+3+3

4.15 X X+ X]|Y++
Y a

I. For the above grammar, construct the LR(1) parse tale.

il Point out where shift-reduce conflict(s) occurs. Gie example(s) of a string(s) for
which the parser will face the conflict(s)?

i. If the shift-reduce conflict(s) is resolved in favo of shift, what is the associativity of
the '+’ operator that corresponds to this choice?2006. Marks: 6 + 3 +]L

4.16 For the following grammar, construct the DFA, recogizing viable prefixes, that includes
just those states of an LR(1) parser that are pusldeon the stack during a parse of the input:
(id||id& . The set of terminals is {, &, (,), id } [2005. Marks: §

Bexp Bexp || Btrm | Bexp | Btrm |
Bexp Bexp | Btrm

Bexp Btrm

Btrm Btrm && Bfct | Btrm & Bfct | Bfct
Bfct (Bepr) | id

4.17 Consider the following grammar:

S aBX|Ay
A ab
B aj|b
Prove that this grammar is not LR(0), but is SLR(1)

4.18 Construct the LALR parse table for the following grammar that generates a subset of all
possible regular expressions. Resolve shift/reduce reduce/reduce conflicts (if occurs) using the
usual precedence rules of the operators. The setioput symbols is {|, ., *, id} R004. Marks: 12

R RYR|RR|R*|id

4.19 Construct the LALR parser table for the following grammar. Show all the necessary steps.
[2003. Marks: 12
P PaQ|Q
Q OQRIR
R Rbjc|d
4.20 Construct the predictive parsing table for the folowing grammar: [In-course. Marks: §
E TA
A +TA|-TA| 1]
T FB
B *FB|/FB| 1]
F -S|S
S vVv|(E)

Show that the following grammar is not SLR(1): [n-course. Marks: 4
S Aa|bAc|dc|hbda

A d

4.21 Construct SLR parsing table for the following grammar. [In-course 1, 2008-2009. Marks: 10
S AS|b
A SAla

4.22 The following grammar for if-then-else statementss proposed to remedy the dangling-else

ambiguity:

stmt if expr then stmt | matched_stmt
matched_stmt if expr then matched_stmt else stmt | other

Justify whether this grammar is ambiguous or not. f the grammar is still ambiguous,

4

rewrite the grammar by removing dangling-else ambigity. [2003. Marks: 6

4.23 Construct the DFA, recognizing viable prefixes, thaincludes just those states of an LR(1)
parser for the following grammar, that are pushed o the stack during a parse of the input
y+++y. [In-course. Marks: g

S A
A A+A|B++
B vy
4.24 E EYTI|T
T TF|F
F F'|IF "|(E)lalb

I. Modify the grammar for LL(1) parser.

il. Find First and Follow for each non-terminal of themodified grammar.

iil. What are the items of the state associated with theiable prefix E | T (E in SLR
parsing for the grammar in (i). Show why the itemsare valid for the state. |[n-course.
Marks:4+6+6 +4

5.1

5.2

5.3

Define synthesized and inherited attributes2003. Marks: 2

A synthesized attribute for a nonterminal A at a parse-tree node N is
defined by a semantic rule associated with the production at N. Note
that the production must have A as its head. A synthesized attribute at
node N is defined only in terms of attribute values at the children of N
and at N itself.

An inherited attribute for a nonterminal B at a parse-tree node N is
defined by a semantic rule associated with the production at the parent
of N. Note that the production must have B as a symbol in its body. An
inherited attribute at node IV is defined only in terms of atiribute values
at N'’s parent, N itself, and N’s siblings.

What is L-attributed definition? “Every s-attri buted definition is L-attributed” — Justify
your answer. [In-course 2, 2008-2009. Marks: 2 42

An SDD is called L-attributed definition if eachtréttute associated with the production bodies is
either:

1. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that there is
a production A — X; X5 .- X,,, and that there is an inherited attribute
X;.a computed by a rule associated with this production. Then the rule
may use only:

(a) Inherited attributes associated with the head A.

(b) Either inherited or synthesized attributes associated with the occur-
rences of symbols X}, X»,..., X;_; located to the left of X;.

(c) Inherited or synthesized attributes associated with this occurrence
of X; itself, but only in such a way that there are no cycles in a
dependency graph formed by the attributes of this Xj.

An SDD is called s-attributed definition if everytribute is synthesized. On the other hand, L-
attributed definition can have inherited attributessides synthesized attributes. Hence, every s-
attributed definition is also L-attributed.

Explain how a translator for an s-attributed ddinition can be implemented as part of
bottom-up parser. [In-course 2, 2008-2009. Marks: 35

When an SDD is s-attributed, its attributes carevauated in any bottom-up order of the nodes
of the parse tree. It is often simple to evalubheedttributes by performing a post-order traveo$ahe
parse tree and evaluating the attributes at a Noalben the traversal leavésfor the last time. That
is, the function postoder() defined below is applie the root of the parse tree.

postorder) {
for (each childC of N, from the left)
postorderC);
evaluate the attributes associated with ngde

}

S-attributed definition can be implemented durirggtdim-up parsing, since a bottom-up parser
corresponds to a post-order traversal. Post-ordeesponds exactly to the order in which an LR-
parser reduces a production body to its head.

5.4 Write an algorithm for constructing a dependeng graph from a given parse tree. [n-course
2, 2008-2009. Marks: B

Put each semantic rule in to the form b :5,f¢g, ...,).

for each noda in the parse trego
for each attribute of the grammar symbol atdo
construct a node in the dependency grapla;for
for each noda in the parse trego
for each semantic rule:= f (c;, ¢, ... ,G) associated with the production useah @o
for i :=1tokdo
construct an edge from the nodedaio the node fob;

5.1 Translate the arithmetic expression a*-(b+c) ito
I. A syntax tree
il Postfix notation
iii. Three-address coded003. Marks: 4

/_
a minus
-||- t 1= b+c
YN to=minust 4
b c abc+-* tz=a*t 2
Syntax Tree Postfix Notation 3-Address Code
5.2 Consider the following grammar for declarationof identifiers. [2003. Marks: 4
D TL
T integer | real
L L,id]id

i. Write down a syntax directed definition to propagat the type information using
inherited and synthesized attributes.

i. Rewrite the grammar so that the type information ca be propagated using synthesized
attributes only.

PRODUCTION SEMANTIC RULES
1) D=>TL L.inh = T.type
2) T —int T.type = integer
3) T — float T.type = float
4) L—L,id Ly.inh = L.inh
add Type(id. entry, L.inh)
i 5 L-=id addType(id. entry, L.inh)

5.3 A syntax directed definition for declaring iderifiers is
Productions | Semantic Actions

D TL L.in := T.type

T int T.type := integer
T real T.type :=real

L

L1,id |L1.in:=L.in,

addtype(id.entry, L.in)

L id addtype(id.entry, L.in)

I. Draw an annotated parse tree for the sentence real;, id,, ids

il. Draw the dependency graph for the parse tree in (i)[In-course 2, 2008-2009. Marks:
3+3

T.Type=real /Imi T :ype " s\i___.‘-v 3\
| L.'m=rea1\ id // o g
real L 3 real m 7L . id;entry
L.m=rea1: id, /' o - .)
| : S T
in 9 L 10
ild-_ 1
entry
Parse Tree Dependency Graph
5.4 Consider the following SDD:
Productions | Rules
T FT T .inh = F.val
T.val = T.syn
T *FT, | T1.inh =T .inh x F.val
T.syn =T .syn
T I7 T .syn = T.inh
F digit F.val = digit.lexval

i. Draw the annotated parse tree for the expression 5*7 using the semantic rules

given above.
ii. Draw the dependency graph.2008. Marks: 2 + 1

T yal = 105
E T .shh =3
F,Ua‘i =3 /T‘.syn = 105\
digit.lezval = 3 * Foyal=35 Tl.inh =15
T7.syn = 105
digit.lezval = 5 /
& . Foal =1 Ty.inh =105
: Tj.5yn = 105
digit.lezval = 7 €

|

digit 2 lesval .~ p 670l 10 syn

digit 3 lesval €

6.1 What are the advantages of using intermediateode generation? I[n-course 2, 2008-20089.
Marks: 2.5

OR, Why would we be interested to generate intermedte code as the final product of the
front end of a compiler? 2005. Marks: 2

With a suitably defined intermediate representatemompiler for languageand maching can
then be built by combining the front end for langeiawith the back end for machineThis approach
to creating suite of compilers can save a conslider@mount of effortm x n compilers can be built by
writing justm front ends ana back ends.

6.2 Translate the expressiofia+b)*(c+d)+(b+c) into

I. Quadruples
ii. Triples
ji. Indirect triples [In-course 2, 2008-2009. Marks:]3

Discuss the comparative advantages and disadvantagef the above representations.2D07.
Maks: 2|

ALSO, What are the advantages and disadvantages abing indirect triple representation of
3-address codes?2004. Marks: 2

op arg arg, result op arg arg instruction op arg arg
t;=a+h o| + | a b t 4 o| + | a b 35| (0) o| + | a b
t,=c+d 1|+ |c d t 1|+ | c d 36 | (1) 1|+] c d
ta=t 1%t o 2 * |t | t, ts 2| * (0) (1) 371 () |2 * |0 (2)
tus=b+c 3+ b [c [t 4 3|+ b |c 381 (3 3|+ b |c
ts=t s+t a4+ Tt [ty | ts 41+ @ 9@ (4 +]@ B
3-Address Code Quadruples Triples Indirect Triples
Comparative Advantages and Disadvantages:
Advantages Disadvantages
Quadruples | Instructions can be moved around withpldtakes more memory space than
requiring changing all references to it. Triples.
Triples Takes less memory space. Moving an instruction reguire
changing all references to it.
Indirect Instructions can be moved by reordering tH@akes more memory space than
Triples instruction list, without affecting the triplesTriples.

themselves. Thus, changes to all references to
the moved instruction are not needed.

6.3 Find the expression that computes the relativaddress of the array element Al iz, ..., i),
where Ais a 10 x 10 x ... x 10 array stored in row-gjor form. [2006. Marks: 2

6.4 What is backpatching? What is the advantage dbackpatching? Explain with an example.
[In-course 2, 2008-2009. Marks: 2 {4

OR, Write short notes on backpatching. 2007. Marks: 3

Backpatching is the activity of filling up unspeed information of labels using appropriate
semantic actions during the code generation process

In the code generation process, a separate paseeded to bind jump labels to addresses.

9

Backpatching merges the intermediate and ticcode generation into one p:

6.1 Define static and dynamic type checking.2006. Marks: 3

6.2 What are type constructors? Name and explain the ksc type constructors. 2003. Marks: 2
+ 3]

6.3 What is name andstructural equivalence of type expressions’in-course 2, 2007. Marks:]

6.4 Write type expression for the following type: An aray of pointers to reals, where array
index ranges from 1 to 100.2005. Marks:]

6.5 Show whether the following recursive type expressis are equivalent or not:[2005. Marks:
2]

6.6 How do we determine the structural equivalence toypes? In-course 2, 2007. Marks2]

ALSO, Give an algorithm for testing structural equivalene of typeexpressions and explain
how it works? [2003. Marks: 1]

6.7 How is encoding of type expressions used for cheoki structural equivalence of type
expressions and what are its advantages (if any[2005, 2003; Ineourse 2, 200. Marks: 3]

6.8 Consider thefollowing grammar in a programming language. Here,P, D, T, S and E
represent the program, the declarations, types, staments and expressions respective
P D;S
D D;D|id:T
T char|int|array[num] of T
S
E literal | num | id | E[E]

Write down the syntax-directed translation for type checking and determire each
declaration’s offset in the activation record. Define the basic types, type constructs ar
functions you use. 2004. Marks:

6.9 Let the followingattribute grammar is used for type checking. 2008. Marks:]

E > num { E.type := integer; }

E - id { E.type := lookup(id.name); }

E - E + E, { if (E,.type = integer & E,.type = integer)
then E.type := integer;
else type error(); }

E - E; [E,] { if (E,.type = integer & E,;.type = array of T)
then E.type := T;
else type error(); }

E - B (Ey) { if (E,.type =T, - T, & E,.type = T,)
then E.type := T,;
else type error(); }

E - E” { if (E,.type = "T) then E.type :=T

else type error(); }

Now consider the following declarations

I integer;
A: array[20] of integer;
B: array[20] of "integer;

10

F: Ninteger integer;

Show how type checking is performed for the followig expressions using the grammar
@) 1:=B[F(AB]]
(i) | := A[F(B[3])]

6.1 Write an SDD to generate 3-address code for thellowing grammar:
P S
S assign|if(B) S1|S1S2
B Bl|B2|Bl&&B2]idlrelid2 |true | false

According to your SDD what code will be generatedofr the following expression?

if (x<100 || x>200&& x!=y)x=0 [2008. Marks: 6 + 2
PRODUCTION SEMANTIC RULES
P =5 S.next = newlabel()
P.eode = S.code || label(S.next)
S — assign S.code = assign.code
S =+ if(B)5S B.true = newlabel()
B.false = S5;.next = S.next
S.code = B.code || label(B.true) || Si.code
S = if (B) S; else S; | B.true = newlabel()
B false = newlabel()

Si.next = Sa.nert = S.next
S.code = B.code
|| label(B.true) || S1.code
(| gen('goto’ S.newt)
|| label{ B.false) || Sp.code

S5 — while (B} 5, begin = newlabel()
B.true = newlabel()
B.false = S.next
Sy.next = begin

S.code = label(begin) || B.code
|| label(B.true) || S1.code
|| gen('goto’ begin)

S =+ 5 5 Sy.next = newlnbel()
Sy.next = S.newt
S.code = Si.code || label(Sy.next) || Sz.code

11

B — B]_ || Bg Bl.fNGZ B.true

B .folse = newlabel()

By.true = B.true

By.false = B.false

B.code = Bj.code || label(B;.false) || Bs-code

B — By && Bs | Bj.true = newlabel()

B .false = B.false

Bs.drue = B.true

Bs.false = B.false

B.code = By.code || label(By.true) || Ba.code

B =18 By .true = B.false
By .false = B.true
B.code = Bj.code

B = (Bp) Bj.true = B.true
B, .faise = B.false
B.code = B;.code

B — E;rel E; | B.code = Ey.code || Eq.code
|| gen{’it’ E1.addr rel.op Fy.addr 'goto’ B.true)
|| gen('goto’ B.false)

B — true B.eode = gen('gote’ B.ilrue)

B — false B.code = gen('goto’ B.false)

Code for the expression(x < 100 || x > 200 && x !=y) x =0
if x < 100 goto Lo

goto Lg
Lg: if x > 200 goto Ly
goto I
Ly: if x != y goto Lg
goto L
Le: =240
Li:
6.2 Write a syntax-directed definition that generags three-address code for Boolean expression

of the following grammar:
E Ei orE >|E ;andE |notE |(E 1)|id irelopid ,|true|false

Using your definition, generate code for the expreson
m<norp<gands<t [In-course 2, 2008-2009. Marks: 6 + 3.5

[This grammar is a subset of the grammar from thevalguestion (6.1). Just replace B with E, ||
with or, && with and, ! with not, rel with relop ithe following SDO.

Code for the expression<norp<gands<t

ifm<ngoto L 1
gotoL
Lo: if p<qgoto L 3
gotoL 4
Ls: ifs<tgotoL 5
gotoL ¢
6.3 Write down a SDT scheme with backpatching to gerate 3-address code for the following
grammar:
S [EthenS|fEtenSeseS|whieEdoS| doSwhieE|{J|A

E EandE|EorE|notE|(E)|idrelopid|tru e | false

12

L

Construct the annotated parse tree for the code segent below:

while (i >) and (k<m) do
ifa>bthens=s+lelses=s-1

Assume the arithmetic statements “s = s + 1” and “s s — 1” above are generated from the
non-terminal A in the above grammar. R003. Marks: 8 +

[The grammars are similar to the following grammars:

1) 8§ — if(B)MS, { backpatch(B.truelist, M.instr);
S.nextlist = merge(B.falselist, Sy.nextlist); }

2) S —¥ if(B) JM;[Sj N else J‘Vfg Sg
{ backpatch(B . truelist, M,.instr);
backpatch(B falselist, Ms.instr);
temp = merge(Sy.nexilist, N.nectlist);
S.nextlist = merge(temp, So.nextlist); }

3) §— while M; (B) M, S,
{ backpatch(S).nextlist, M,.instr);
backpatch(B.truelist, Ma.instr);
S.nestlist = B.falselist;
emit('goto’ M.instr); }

4) S+ {L} { S.nextlist = L.neztlist; }

5) &= 4; { S.nextlist = null; }

6) M — ¢ { M.instr = nextinstr; }

NN =€ { N.neztlist = makelist{nextinstr);

emit('goto '); }

8) L-Li1MS { backpatch(Ly.neztlist, M.instr);
L.nextlist = S.nextlist; }

9) L= 8 { L.neztlist = S.neztlist; }

1) BByl M By { backpatch{ B, .falselist, M.instr);
B.truelist = merge(B, .truelist, Bs.truelist);
B.falselist = Bs.falselist; }

2) BBy & M By { backpatch(B;.truelist, M.instr);
B.truelist = By.truelist;
B.falselist = merge(B .falselist, B falselist); }

3) B~ 1B { B.truelist = B, .falselist;
B falselist = B .truelist; }
4) B—=(B) { B.truelist = By .truelist;
B .falselist = B, .falselist; }
5) B - E; rel F, { B.truelist = makelist(nextinsir);

B._falselist = makelist{nextinstr + 1);
emit('it’ Ey.addr rel.op Ey.addr 'goto ');
emit('goto '); }

6) B - true { B.truelist = makelist(neztinstr);
emit('goto '); }

T} B - false { B.falselist = makelist(nextinstr);
emit(‘goto '); }

8] M—e { M.instr = nextinstr; }

The following grammar generates the assignmestatements of single dimensional array and
identifiers

13

6.5

6.6

6.7

S E=E
E E+E|id]|id[E]

i. Write a syntax-directed translation scheme for thegrammar to produce 3-address
codes.

ii. Draw the annotated parse tree for the statement[i] = x[x[i]] + i , according to
your translation scheme. Assume the arrayx[] is a 10 element array where each
element occupies 2 bytes2p07. Marks: 5+ %

Consider the following grammar: 007, 2005. Marks: 8 +]6

S ifEthen S| forid = NUM to NUM Step by NUM S| { L} A
E EorE|idrelopid]|idrelop NUM
L

i. Write down a syntax-directed translation scheme wh backpatching to generate 3-
address codes for the grammar. Assum& generates assignment statements (e.g. a=a +
1) that are represented by a single quad. The semies of “for”: id will be initialized to
the first NUM, incremented in each iteration by theamount specified by the third NUM
up to the second NUM. The token NUM is a signed iager.

il. According to your translation scheme for the gramma in question (i), construct the
annotated parse tree for the following code fragmen Assume the 3-address codes start
from quad 100.

fora=1to 10 step by 2 {
ifb>10ora<cthenb=b-1;
c=c-b

}

a=a+1
Consider the following grammar: R004. Marks: 8 + §

S ifEthenSelseS|for (A E;A)S|{L}|A
E EandE|EorE|idrelopid|id relop NUM
L

i. Write down a syntax-directed translation scheme wh backpatching to generate 3-
address codes for the grammar. Assum& generates assignment statements (e.g. a=a +
1) that are represented by a single quad and “forhas the same semantics of Ctor
loop.

ii. According to your translation scheme for the gramma in question (i), construct the
annotated parse tree for the following code fragmemn Assume the priority of ‘and’ is
greater than that of ‘or’ and the 3-address codestart from quad 100.

if(b>10ora<danda>c)thenb=b-1else d=d+1
a=a+l

iii. According to your translation scheme for the gramma in question (i), construct the
annotated parse tree for the following code fragmen Assume the priority of ‘and’ is
greater than that of ‘or’ and the 3-address codestart from quad 20. [In-course 2, 2007.
Marks: 5]

a=a+1,
for(b=0;b>a;b=b+1){
fb<candb>10thenb=c-1
elseb=c-2
}
Cc=2;
Consider the following grammar: R006. Marks: 8 + §

S ifEthen S|repeat S until E| {L} | A
E EorE|idrelopid

14

L S

i. Write down a syntax-directed translation scheme wh backpatching to generate 3-
address codes for the grammar. Assum& generates assignment statements (e.g. a=a +
1) that are represented by a single quad and relogpresents any relational operator.

il. According to your translation scheme for the gramma in question (i), construct the
annotated parse tree for the following code fragmen Assume the 3-address codes start
from quad 10.

repeat {
a=-a+1l,
ifb<l10ora>bthenb=b+1
} until (a > c)
6.8 Consider the following grammar: R006. Marks: 8 + §

S ifEthen S|repeat SuntilE|{L}|A
E EandE|idrelopid| (E)
L
i. Add production to generate “break” and “continue” statements. Write down a syntax-
directed translation scheme with backpatching to geerate 3-address codes for the
modified grammar. Assume:
a. A generates assignment statements (e.g. a = a +H3ttare represented by a single
quad.
b. “break” and “continue” statements have the semantis that those statements have
in C language.
il. According to your translation scheme for the gramma in question (i), construct the
annotated parse tree for the following code fragmen Assume the 3-address codes start
from quad 100.

repeat {
if (@ > b and a < c) then break;
a=a->b

} until (a > d)

a=za+1

6.9 The following grammar generates expressions fored by applying an arithmetic operator +
to integer and real constants. When two integers ar added, the resulting type is integer,
otherwise, it is real:

E E+T|T
T num.num | num
Give an SDD to determine the type of each sub-exmgion. P006. Marks: 4

15

8.1 Briefly describe the issues in the design of@de generator. [n-course 3, 2008-2009. Marks:
4]

Issues in the design of a code generator:
1. Input to the Code Generator

The input to the code generator is the intermediate representation of the source
program produced by the front end, along with information in the symbol table
that is used to determine the run-time addresses of the data objects denoted
by the names in the IR.

The many choices for the IR include three-address representations such as
quadruples, triples, indirect triples; virtual machine representations such as
bytecodes and stack-machine code; linear representations such as postfix no-
tation; and graphical representations such as syntax trees and DAG’s.

2. The Target Program

The instruction-set architecture of the target machine has a significant im-
pact on the difficulty of constructing a good code generator that produces
high-quality machine code. The most common target-machine architectures
are RISC (reduced instruction set computer), CISC (complex instruction set
computer), and stack based.

A RISC machine typically has many registers, three-address instructions,
simple addressing modes, and a relatively simple instruction-set architecture.
In contrast, a CISC machine typically has few registers, two-address instruc-
tions, a variety of addressing modes, several register classes, variable-length
instructions, and instructions with side effects.

3. Instruction Selection

The code generator must map the IR program into a code sequence that can be
executed by the target machine. The complexity of performing this mapping is
determined by a factors such as

e the level of the IR
¢ the nature of the instruction-set architecture
e the desired quality of the generated code.

If the IR is high level, the code generator may translate each IR statement
into a sequence of machine instructions using code templates. Such statement-
by-statement code generation, however, often produces poor code that needs
further optimization. If the IR reflects some of the low-level details of the un-
derlying machine, then the code generator can use this information to generate
more efficient code sequences.

4. Register Allocation

A key problem in code generation is deciding what values to hold in what
registers. Registers are the fastest computational unit on the target machine,
but we usually do not have enough of them to hold all values. Values not held
in registers need to reside in memory. Instructions involving register operands
are invariably shorter and faster than those involving operands in memory, so
efficient utilization of registers is particularly important.

16

5. Evaluation Order

The order in which computations are performed can affect the efficiency of the
target code. some computation orders require fewer registers

to hold intermediaté results than others. However, picking a best order in
the general case is a difficult NP-complete problem.

8.2 Write short notes on the following: 003. Marks: 2 x §

I. Basic blocks
i. Peephole optimization

I. Basic blocks are maximal sequences of conseculiree{address instructions with the
properties that

a. The flow of control can only enter the basic blabkough the first instruction in the
block. That is, there are no jumps into the middléhe block.

b. Control will leave the block without halting or Im@hing, except possibly at the last
instruction in the block.

il. While most production compilers produce good code through careful instruc-
tion selection and register allocation, a few use an alternative strategy: they
generate naive code and then improve the guality of the target code by applying
“optimizing” transformations to the target program.

A simple but effective technique for locally improving the target code is
peephole optimization, which is done by examining a sliding window of target
instructions (called the peephole) and replacing instruction sequences within
the peephole by a shorter or faster sequence, whenever possible.

Following are examples of program transformations that are characteristic of -
peephole optimizations:

¢ Redundant-instruction elimination
¢ Flow-of-control optimizations
e Algebraic simplifications

e Use of machine idioms

8.3 With the help of an example describe the “nextse” algorithm. [In-course 3, 2008-2009.
Marks: 4.9

* Input: A basic block B of three-address statemémitially the symbol table shows all
nontemporary variables in B as being live on exit.

* Output: At teach statementx =y + zin B, attach to | the liveness and next-use infatian of

XY, Z
* Method: Start at the last statement in B and seakwards. At each statemenk =y + zin
B, do
— Attach to statemerntthe information currently found in the symbol &legarding the
next use and liveness xfy, z.
— In the symbol table, s&tto “not live” and “no next use” (i.e., “dead”)
— In the symbol table, sgtandz to “live” and the next uses gfandztoi.
Example:

17

tl

1: =4 * i o t1:n(2) i:L(3)
2: t2 := a[tl] €——t2:L(5) a:L(0) tl:D
3: 83 =4 %1 e i3:n(4) i:L(8)
4: t4 := b[t3] €——t4:L(5) b:L(0) t£3:D
5: €3 = t2 * t4 e—i5.1(6) t2:D t4:D
6: t6 := prod + td¢«——+t6:1.(7) prod:D t5:D
7: prod := t6 &———prod:L(0) t6:D
8: t7 =i 4+1 <« ——t7:1(9) i
9: i :=t7 €———i:L(10) t7:D
10: if i <= 20 gOtDE' . :'LIL(O:I

Table:

Initial | Step 1| Step 2| Step 3| Step 4| Step 5| Step 6| Step 7| Step 8| Step 9| Step 10

t1 |D D D D D D D D D L(2) | D
2 |D D D D D D L(5) | L(B) | L(B) | D D
t3 |D D D D D D D L4 | D D D
t4 | D D D D D D L(5) | D D D D
t5 |D D D D D L(6) | D D D D D
t6 | D D D D L(7) | D D D D D D
t7 |D D LO) |D D D D D D D D

a LO) |LO) |LO) |LO) |LO) |LO) [LO) |LO) | LO) |LEZ) | L2)
b LO) |LO) |LO) |[LO) |LO) |LO) [LO) | L&A | LA | LA | U4
prod | L(0) |L(0) |L©O) |L©O) |D L(6) | L(6) | L(6) | L(6) | L(6) | L(B)
i L(0) | L(10) | D L(8) | L(8) | L(8) | L(B) | LB) | LB) | LB) | L?

8.4 Write down the heuristic for graph coloring. What options do we have when an interference
graph is found not to be k-colorable when there ard registers in the target machine? How do
we determine the cost of fixing that problem?Ip-course. Marks: 3 + 3

ALSO, Describe the heuristic used to color an intéerence graph. [n-course. Marks: 2.%

Although the problem of determining whether a graph is k-colorable is NP-
complete in general, the following heuristic technique can usually be used to do
the coloring quickly in practice. Suppose a node n in a graph G has fewer than
k neighbors (nodes connected to n by an edge). Remove n and its edges from
G to obtain a graph G'. A k-coloring of G’ can be extended to a k-coloring of
G by assigning n a color not assigned to any of its neighbors.

By repeatedly eliminating nodes having fewer than k edges from the register-
interference graph, either we obtain the empty graph, in which case we can
produce a k-coloring for the original graph by coloring the nodes in the reverse
order in which they were removed, or we obtain a graph in which each node has
k or more adjacent nodes. In the latter case a k-coloring is no longer possible.
At this point a node is spilled by introducing code to store and reload the
register. Chaitin has devised several heuristics for choosing the node to spill.
A general rule is to avoid introducing spill code into inner loops.

8.1 Describe the code generation algorithm for a @ddress machine. Generate the code for the
following code segment according to the algorithniin-course. Marks: 6 + 4
Tl:=a+c
T2:=b*T1
T3 =T1-T2
T4:=T3

a =T3*T4

18

8.2 Consider a hypothetical machine with four regiers R1, R2, R3, R4 and six addressing
modes with the following costs.

Addressing Mode Cost
Absolute Memory Address| 1
Register 0
Literal 0
Indirect Register 1
Indirect Plus Address 1
Double Indirect 2

Now use an efficient algorithm to generate code fathe target machine from the following
block of 3-address codes:

tl:=a+b
t2:=tl*c
t3:=t2-t1
b =t3

Calculate the cost of generated code and comparettvicost of code generated with naive
approach to code generation.J008. Marks: §

8.3 Draw the flow graph for the following program:[In-course 3, 2008-2009. Marks:]4
begin
prod :=0;
i:=1;
do begin
prod := prod + a[i] * bl[i];
=i+
end
while (i <= 20);
end
8.4 Draw the flow graph for the following sequencef 3-address codes2p08. Marks: 3
(1) i=0 (9) if t4 <=20 goto (5)
(2) t1 =10 (20) t6 = z[t5]
3) t2=i<tl (12) *(t7) =16
4) if False t2 goto (15) (12) t8=1
(5) t3=4 (13) i=i+19
(6) t4=1t3*i (14) goto (2)
(7) tb=a+t4 (15) return
(8) if t5 >= 100 goto (15)
8.5 For the following code fragment, determine thenext-use information (assume that all the
variables are live and all temporaries are dead ahe end of the block). R008. Marks: %
(1) 6 :=4 *| (6) aftr] =19
(2) X := a[t6] (7) t10 :=4 %]
(3) t7 :=4*| (8) b[t10] := x
4) t8:=4*] (9) goto
(5) t9 := a[t8]
8.6 Consider the following block of 3-address code
tl:=z*X
t2:=z+1tl
y =t2*z
Z =X+y
tl:=z*x
y =x/tl

Use the graph coloring algorithm for register alloation for the block of code given above.

19

Assume the number of registers is R = 3 and all tgporaries are dead at the end of the block.
[2008. Marks: §
Liveness Information: Interference Graph with Coloring:
tl:=z*x {x, z}
t2:=z+1t1 {x, z, t1}
y =t2*z {x, z, 12}
z =x+y {xy}
tl:=z*x {x, z}
y =x/t1 {x, z, t1}
.y, z}

Stack:t1, z, t2, x, y

< ___X
~—
N—N

—11

20

9.1 What do you understand by peephole optimizatias? In-course 3, 2008-2009. Marks:]4

While most production compilers produce good code through careful instruc-
tion selection and register allocation, a few use an alternative strategy: they
generate naive code and then improve the quality of the target code by applying
“optimizing” transformations to the target program.

A simple but effective technique for locally improving the target code is
peephole optimization, which is done by examining a sliding window of target
instructions (called the peephole) and replacing instruction sequences within
the peephole by a shorter or faster sequence, whenever possible.

Following are examples of program transformations that are characteristic of *
peephole optimizations:

e Redundant-instruction elimination
o Flow-of-control optimizations
o Algebraic simplifications

e Use of machine idioms

9.2 What is a copy statement? When can we eliminatepy statements? Give an example2(07,
2004. Marks: 4

Assignments of the form u = v are callgmpy statements
We can eliminate copy statements when there arenmonsub-expressions in statements.
Example:

In order to eliminate the common subexpression from the state-
ment ¢ = d+e in Fig. 9.6(a), we must use a new variable ¢ to hold the value of
d+e. The value of variable t, instead of that of the expression d + e, is assigned
to ¢ in Fig. 9.6(b). Since control may reach ¢ = d+e either after the assignment
to a or after the assignment to b, it would be incorrect to replace ¢ = d+e by
either ¢ = aor by ¢ = b.

|a=d+e b = d+e| £t = d+e t = dte
a=t b=t
¢ = d+e
(a) (b)

Figure 9.6: Copies introduced during common subexpression elimination

9.3 What is meant by dead code? Give example20D7. Marks: 2
Dead codeare statements that compute values that neversgeit

For example, suppose a variabkbugis set to FALSE at various points in the programg used
in statements likéf (debug) print...If copy propagation replacetebugby FALSE, then the print
statement is dead because it cannot be reachedeHeaoth the test and the print operation can be
eliminated from the object code.

21

9.4 In order to generate optimized code, you havé&é options to do dead-code elimination, copy
propagation, CSE (Common Sub-expression Eliminationp global register allocation and
instruction scheduling. In which order would you pe&form these operations? Justify your choice
with proper reasoning. [2006. Marks: %

1. First of all, copy propagation should be performieavould increase the possibility of finding
common sub-expressions.

2. Then, CSE should be performed.

3. After these two steps, there would be a good piisgibf existence of dead-code. So, at this
stage, dead-code elimination should be performed.

4. Then, instruction scheduling might increase thenckaof a more efficient register allocation.
So, it should be performed.

5. Finally, Register allocation should be applied.

9.5 Define UD- and DU-chains. What purposes do theserve? P007, 2004. Marks: 4
UD-Chain: Purpose of UD-Chain:
DU-Chain: Purpose of DU-Chain:
9.6 What are the techniques to optimize a loop? Desbe any one of them. [n-course 3, 2008-

2009. Marks: 3.5
ALSO, What is the basic loop optimization techniqu@ [2004. Marks:]
The techniques to optimize a loop are as follows:

1. Code Motion
2. Induction-Variable Elimination
3. Reduction in Strength

The basic loop optimization techniquecsde motionlIf an expression is computed within a loop
and it does not depend on variables that changeeiioop, then it can be moved to just before the
loop.

Example:

22

Why would you be concerned to find whether a dw graph is reducible or not? R007.

9.7
Marks: 2]
OR, For loop optimization, why are we interested indetermining whether a flow graph is
reducible or not? [2004. Marks: 2
9.8 Write down an algorithm for detecting loop invaiant computations. [2007, 2005. Marks: b
9.1 Consider the following fragment of intermediatecode:
y=w
z=4
V=y*y
u=z+2
r =w ** 2 //this is exponentiation
t=r*v
s=u*t

Assume the only variable live at the exit iss. Show the result of applying constant
propagation, algebraic simplification, common sub-gpression elimination, constant folding,
copy propagation and dead code elimination as muchs possible to this code. You should

explain the changes in each step2007, 2005. Marks: b

y=w

z=4

V=y*y

w*w [Copy Propagation]
zZ+2

4+2 [Constant Propagation]
[Constant Folding]

c

6

w ** 2
w*w [Algebraic Simplification]

% [Common Sub-expression Elimination]

r

23

t=r*v

=vV*y [Copy Propagation]
sS=u*t

=6*t [Constant Propagation]

After dead-code elimination:
V=w*w
t=v*v
S=6*t
9.2 Consider the following fragment of intermediatecode:
w=2
u=z
y=w+1
V=y*y
r=v ** 2 /lthis is exponentiation
t=u*u
s=u*t
X=y*y
Assume the only variables live at the exit are, x. Show the result of applying constant
propagation, algebraic simplification, common sub-gpression elimination, constant folding,
copy propagation and dead code elimination as muchs possible to this code. You should
explain the changes in each steplinfcourse. Marks: 4

w=2
u=z
y=w+1
=2+1 [Constant Propagation]
=3 [Constant Folding]
vV=y*y
=3*3 [Constant Propagation]
=9 [Constant Folding]
r=v=*2
=v*v [Algebraic Simplification]
=9*9 [Constant Propagation]
=81 [Constant Folding]
t=u*u
=z*z [Copy Propagation]
s=u*t
=z*t [Copy Propagation]
X=y*y
=3*3 [Constant Propagation]
=9 [Constant Folding]
After dead-code elimination:
t=z*z
s=z*t
Xx=9
9.3 For the following code fragment, list all the dpendencies between statements and draw the
dependency graph.2006. Marks: 3
(1) j= (50 m=m+2
(2) k=j+1 (6) k=j+lI
3 j=6 (7)) J=k+]
(4) m=k*j

List of dependencies between statements:

1. (2) depends on (1) for value jof
2. (4) depends on both (2) and (3) for valuek ahdj respectively.

3. (5) depends on (4) for value wi

24

9.4

9.5

9.6

4. (6) depends on (3) for value jof
5. (7) depends on both (3) and (6) for valueg afidk respectively.

Dependency Graph:

Let, for statementd andB, denotes thaats dependent oB.

o &°

Consider the following code fragment.J003. Marks: 3 +2 +

begin
fori:=1tondo
forj:=1tondo
begin
cfi,j] :==0;
fork:=1tondo
cfi,j] = c[i,j] + a[i,k] * b[k,j];
end
end

Assume a, b and c are allocated static storage atftere are 2 bytes per word in a byte
addressable memory. Produce three-address code fibre code fragment.

Construct the flow graph from the three address stement.

Optimize the code by eliminating common sub-expregms, eliminating dead-code
and different loop optimization techniques.

Consider the following code segmen2006. Marks: 3 +5 + }

(1)
(2)
3)
(4)
(5)
(6)
(7)
(8)
(9)

i= b+c (20) goto (13)

b=10 (12) g=-k

k=9 (12) f=d+4
a=b+c (13) c=25

d=e+f (14) h=e+10
k=j+1 (15) j=b+]

if p > 10 goto (9) (16) if g > 10 goto (4)
goto (11) a7 exit

e=5

Draw the control flow graph (CFG).

Perform global CSE and draw the CFG for the code tht results from CSE. You need
not to show the computation for finding available g&pressions. Only show the
available expressions at the input of each basicduk.

Find all natural loops and identify the loop invariant statements. Which statements
are safe to be moved to the loop’s pre-header andwy?

Consider the code segment below2(04. Marks: 3 + §

(1) m=5 (8) return g
(2) f=0 (9) h=f-g
(3) g=1 (10) g=f
(4) if m < 10 goto (6) (11) f=h
(5) return m (12) i=i+1
(6) =2 13) goto (7)

(7) ifi<m goto (9)

i. Construct a flow graph.
ii. Find the live variables at the end of each block.

25

B, f: useB; = {}
9= defB; = {m, f, g}
|fm <10 goto B
v _
B return n 32?8822:_{{?)
B derto=
B, iti <m goto E, el
l useBs = {g}
Bs return g defB:= {}9
h=f-g
B g=f useBg = {f, g, i}
° : |h+ . defBs = {f, g, h, i}
goto B,
IN[B]®°| OuT[B]* IN[B] * OUT[B]? IN[B] 2 ouT[B]* IN[B] ®
Bi| {} {f.g.m} {} {f.g,m} {} {f.g,m} {}
B2| {} {} {m} {} {m} {} {m}
Bs| {} [{fgim} | {fgm} [{fgim}| {fgm} |[{fgim}| {fgm}
Ba| {} {f.g.i} [{fgim} [{fgim} {fgim}|{fgim}| {fgim}
Bs| {} {} {g} {} {g} {} {g}
Be| {1} {} {f.g.i} {fgim} [{fgim} {fgim} {fgim}

\\ Live variables after each block:

Bl:{f1 g1m}
Ba: {}

Bz {f, g,i,m}
B4 {f,g,i,m}
Bs: { }

Be: {f,g,i,m}

[Points to be noted from this answer:

1. There is no edge from the block containmegurn m to the following block, because after
returning from a block, the program never flowsobein the block. The same case holds for
return g, too. This is according to the rule of puttingedyge in flow graph (from page 529,

2.

4. mis notusel in B, as can be mistakenly assumed fromithastruction. That's because is

bullet point no. 2).

As there is no edge outgoing framturn m, hence its OUT is empty. However, its IN is not

empty as iusesm.

Block B, should be counted — even though there is no Var@atsignment statement. That's
because the compiler must know to before comparing whether both are live or not. And
after the end of the block, shouldandm be dead and discarded or not. Similartyjn B

should also be counted.

26

9.7

9.8

9.9

9.10

5.

definedbeforeit is used in this block. From the definition wde; (from page 609, point 2
is notuseal. Similarly, h is notusal in Bs. (Also see page 609, the paragraph dfeample
9.13for further clarification.)

Although usually live variable analysis includedlack containingeXIT , in this particular
case, there should be no exit block. That's becdhselast block B includes as its last
statement amnconditional jump —goto B, after executing which the program control will
always flow to B and never to any other block.]

Consider the following sequence of 3-addressdas: [In-course. Marks: 4 + §

(1) e=e—-Db (8) goto (11)

(2) d=a*c (9) g=a*c

(3) if e < d goto (1) (20) goto (13)

4) ize+f (11) i=d*d

(5) j=a+hb (12) j=c+1

(6) c=c*2 (13) if i > goto (5)
(7) if c > d goto (9) (14) exit

Draw the flow graph.
Compute live variables at the end of each block usgy the iterative solution to dataflow
equations for live variable analysis.

Consider the following sequence of 3-addressdas: [In-course. Marks: 2 + 6 + P

(1) c=a+hb (8) goto (11)

(2) d=a*c (9) glij=a*c

(3) e=d*d (20) goto (13)

4) i=1 (12) glil=d*d

(5) fll=a+b (12) i=i+1

(6) c=c*2 (13) if i > 10 goto (5)
(7) if c > d goto (9) (14) exit

Draw the flow graph.

Compute the available expressions at the beginningf each block using the iterative
solution to dataflow equations for available expresions.

Draw the flow diagram after global CSE.

Consider the following sequence of 3-addressdas: 2007. Marks: 4 + §

(1) a=a -—d (8) e=c -— a
(2) f=b*d 9) if e > 10 goto (3)
(3) c=a+b (20) goto (13)

(4) d=c-a (11 a=b*d

(5) if d > x goto (7) (12) b=a-d

(6) d=b*d (13) if b > 10 goto (1)
(7) b=a+b (14) exit

Draw the flow graph.

Compute live variables at the end of each block usgy the iterative solution to dataflow
equations for live variable analysis.

Show the execution of the algorithm solving the datflow equations set up for available
expressions. [n-course. Marks: g

Consider the following sequence of 3-address cod¢2005. Marks: 2 + b

(1) i=m -1 (7) goto (9)

(2) j=n (8) a=u2

(3) a=ul (9) i=u3

(4) i=i+1 (20) if u3 > 0 goto (4)
(5) ji=j-1 (11) exit

(6) if i > j goto (8)

27

i. Draw the flow graph.
ii. Find the definitions reaching the end of each blocly iteratively solving the dataflow
equations for reaching definitions.

\'\ Definitions reaching at the end of each block:
Bi: { di, dp, d3 }
Bo: { d3, d4, ds, d }
Ba: { ds4, ds, dg }
Ba: { ds, ds, ds, 07 }
9.11 Consider the following flow graph: [In-course 3, 2008-2009. Marks: 4 {2

i. Compute UD and DU-chain for the flow graph.
ii. Compute live variables at the end of each block dhe flow
graph.

i. UD-Chain:

B,

Dy: i :=m-1
Dy: 5 :=n
Dy: a :=w
v K
B, [D: 1 <. [,
D:: j

(1]

DU-Chain:

28

A
D= a

9.12 Consider the following flow graph: [2008. Marks: 4 + 2 + 2 + 4 +]4

Compute UD and DU-chain for the above flow graph.
Compute live variables at the end of each block ahe flow graph.

I. Compute available expressions for the flow graph.
. Is any constant folding possible in the flow graph®™ so, do it.

Are there any common sub-expressions in the flow gph? If so, do it.

9.13 Consider the CFG below where only definition (v = .).
and use (... = v) of the interesting variables are shwn.

List the webs as wep= {list of statements $s In

web}.

Draw the interference graph.

If coloring is possible and if you have three regtsrs

Ro, R1, Ry, identify for each node the allocated
register allocation. Assume the variable k cannot®
allocated to register R. Otherwise, which node
would you choose to spill and why?2006. Marks: 2
+3+73

29

9.14

Consider the CFG below where only definition (v = .).
and use (... = v) of the interesting variables are shwn.

List the webs as wep= {list of statements $s in
web}.

Draw the interference graph.

If you have three registers, show the code after
register allocation (if coloring is possible). 2005.
Marks: 2 + 3 + 3

30

