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4.1 What are the error recovery strategies generally used by parser? [2006. Marks: 2] 

1. Panic-Mode Recovery 
2. Phrase-Level Recovery 
3. Error Productions 
4. Global Correction 

4.2 What is ambiguous grammar? [In-course 1, 2008-2009. Marks: 1] 

A grammar is ambiguous if it can have more than one parse tree generating a given string of 
terminals. 

4.3 What is meant by left recursion in a grammar? [In-course 2005-2006. Marks: 1] 

A grammar is left recursive if it has a nonterminal A such that there is a derivation A �
�  A�  for 

some string � . For example: A �  A�  | �  

4.4 What is the problem with a production with an immediate left-recursion in a grammar? 
How can we eliminate left recursion? [2005. Marks: 3] 

A production with an immediate left-recursion can cause recursive-descent and top-down 
predictive parsers to loop forever. 

Removing immediate left recursion: 

If A �  A� 1 | A� 2 | … | A� m | � 1 | � 2 | … | � n 

Then we can rewrite the grammar as below: 

A �  � 1A� | � 2A� | … | � nA� 

A� �  � 1A� | � 2A� | … | � mA� | Î  

4.5 Can we create LR parser table from an ambiguous grammar? When or why would one 
prefer to use ambiguous grammar? Justify your answer with example. [2008, In-course 1, 2008-
2009. Marks: 1 + 3] 

4.6 Give an unambiguous grammar that is not LR(1). [2006. Marks: 3] 

4.7 Define LL(k) and LR(k) grammars. Write down the basic properties of LL(1) and LR(1) 
grammars. [2007. Marks: 2 + 4] 

4.8 What is a synchronizing set? Write down the procedure for panic mode error recovery in 
LL parsing. [ 2005. Marks: 4] 

4.9 What is the difference between LR(0) grammar and SLR grammar? [2008. Marks: 2] 

4.10 What is ÎÎÎ Î -production? How ÎÎÎ Î -productions are handled in bottom-up parsing? Explain it 
from the grammar below: [2007. Marks: 4] 

S �  aB 
B �  ÎÎÎ Î  | x 

4.11 What are inadequate states? How do we try to resolve the problem associated with such 
states in SLR and LR(1) parsing? [2005. Marks: 4] 

4.12 What do you understand by shift-reduce and reduce-reduce conflicts? Why these conflicts 
arise? Explain rules for resolving these conflicts in parsing table. [2007. Marks: 6] 

4.13 Show that the construction of an LALR parser by merging LR(1) item sets with common 
core of a LR(1) grammar will not introduce any shift/reduce conflict. [2004. Marks: 4] 
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4.14 Write down the general structure of LR parsers. [2003. Marks: 4] 

4.15 What does the characters L, A, L, R and 1 in the name LALR(1) parser stand for? [In-
course. Marks: 1] 

4.16 Which of the LL(1), SLR(1) and LR(1) can parse the following grammar? Why? [In-course. 
Marks: 2.5] 

S �  A | B 
A �  b | c 
B �  c | a 

4.17 What does a lexical analyzer do when prefixes of the input string matches more than one 
patterns? [2007, 2004. Marks: 2] 

	
��������

4.1 Consider the grammar: 

S �  (L) | a 
L �  L,S | S 

i. Find parse trees for the sentencs (a, (a,a)) and (a,((a,a),(a,a))). 
ii.  Construct a leftmost derivation for each of the sentences in part (i). 
iii.  Construct a rightmost derivation for each of the sentences in part (i). [2003. Marks: 6] 

4.2 Eliminate ambiguities for the grammar: [In-course 1, 2008-2009. Marks: 5] 

E �  E + E | E * E | (E) | id 

4.3 Eliminate left recursion from the following grammar: 

S �  SX | SSb | XS | a 
X �  Xb | Sa | b 

When does the above algorithm of eliminating left recursion fail? [2008. Marks: 3 + 2] 

4.4 Consider the grammar with the set of terminals: 

S �  (L) | a | b 
L �  L,S | S 

(i) Remove left-recursion from the grammar and find the First and Follow sets for each 
non-terminal of the modified grammar. 

(ii)  Write down a recursive descent parser (i.e. parsing algorithm) for the modified 
grammar. [2007. Marks: 5 + 5] 

4.5 Consider the following grammar for arithmetic expressions. 

E �  E + T | E – T | T 
T �  T * F | T / F | F 
F �  (E) | id 

i. Write the above grammar eliminating immediate left recursion. 
ii. Draw the simplified transition diagram for the grammar. [2005. Marks: 4] 

4.6 Consider the grammar with the set of terminals { (, ), , , a, b}: 

S �  (L) | a | b 
L �  L,S | S 

a. Remove left-recursion from the grammar and find the First(1) and Follow(1) sets for 
each non-terminal of the modified grammar. 

b. Construct the operator precedence relation table for the grammar. 
c. Find the right-most derivation in reverse for the string (a, (b, a)) and indicate the handles 

at each step. 
d. Draw the transition diagram of the grammar and simplify it (if possible). [2004. Marks: 3 
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+ 3 + 4 + 3 + 3] 
e. Write down a recursive descent parser for the modified grammar. [In-course 2005-2006. 

Marks: 5] 

4.7 Left factor the following grammar: [2003. Marks: 3] 

A �  AabcA | Aad | AabA | Ad 

4.8 Build an LL parsing table for the following grammar: 

S �  (L) | a 
L �  L,S | S 

Is this an LL(1) grammar? Justify your answer. [2008. Marks: 5 + 2] 

4.9 Show that the following grammar is SLR but not LR(0). [2008. Marks: 6] 

S �  A 
A �  a A 
A �  a 

4.10 With LALR (lookahead LR) parsing, we can reduce the number of states in an LR(1) parser. 
Justify the above statement using the following grammar: [ 2008. Marks: 8] 

S �  XX 
X �  aX 
X �  b  

4.11 Consider the grammar: S �  aSbS | bSaS | ÎÎÎ Î . Show that the grammar is ambiguous 
by constructing two different left most derivations for a string. [2006. Marks: 3] 

4.12 Find the LL(1) parsing table for the following grammar. Show the first and follow sets for 
the non-terminals. [In-course. Marks: 4 + 4] 

S �  aS | Ab 
A �  XYZ | ÎÎÎ Î  
X �  cS | ÎÎÎ Î  
Y �  dS | ÎÎÎ Î  
Z �  eS  

4.13 Give a grammar with the following first and follow sets. Your grammar should have no 
epsilon productions. The non-terminals are X, Y, Z and the terminals are a, b, c, d, e. [In-course. 
Marks: 6] 

 X Y Z a b c d e F 

First b, d, f b, d c, e a b c d e f 

Follow $ c, e a $ b, d c, e c, e a $ 

  
4.14 Consider the following grammar: 

X �  YaYb | ZbZa 
Y �  b 
Z �  a | ÎÎÎ Î  

i. Give the parse tree for the string “babb”. 
ii.  Show the sentential forms of each stage in a top-down leftmost derivation of “baa”. 
iii.  Show the sentential forms of each stage in a bottom-up rightmost derivation of 

“babb”. 
iv. Work out the following sets: FIRST(X), FOLLOW(X), FOLLOW(Y). [ 2006. Marks: 2 

+ 3 + 3 + 3] 
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4.15 X �  X + X | Y++  
Y �  a  

i. For the above grammar, construct the LR(1) parse table. 
ii.  Point out where shift-reduce conflict(s) occurs. Give example(s) of a string(s) for 

which the parser will face the conflict(s)? 
iii.  If the shift-reduce conflict(s) is resolved in favor of shift, what is the associativity of 

the ‘+’ operator that corresponds to this choice? [2006. Marks: 6 + 3 + 1] 

4.16 For the following grammar, construct the DFA, recognizing viable prefixes, that includes 
just those states of an LR(1) parser that are pushed on the stack during a parse of the input: 
(id||id& . The set of terminals is { |, &, (, ), id  } [2005. Marks: 8] 

Bexp �  Bexp || Btrm | Bexp | Btrm |  
Bexp �  Bexp | Btrm 
Bexp �  Btrm 
Btrm �  Btrm && Bfct | Btrm & Bfct | Bfct 
Bfct �  (Bepr) | id  

4.17 Consider the following grammar: 

S �  aBX | Ay 
A �  ab 
B �  a | b 

Prove that this grammar is not LR(0), but is SLR(1). 

4.18 Construct the LALR parse table for the following grammar that generates a subset of all 
possible regular expressions. Resolve shift/reduce or reduce/reduce conflicts (if occurs) using the 
usual precedence rules of the operators. The set of input symbols is {|, ., *, id} [2004. Marks: 12] 

R �  R ‘|’ R | R.R | R* | id 

4.19 Construct the LALR parser table for the following grammar. Show all the necessary steps. 
[2003. Marks: 12] 

P �  PaQ | Q 
Q �  QR | R 
R �  Rb | c | d 

4.20 Construct the predictive parsing table for the following grammar: [In-course. Marks: 6] 

E �  TA 
A �  +TA | -TA | ÎÎÎ Î  
T �  FB 
B �  *FB | /FB | ÎÎÎ Î  
F �  -S | S 
S �  v | (E) 

Show that the following grammar is not SLR(1): [In-course. Marks: 4] 

S �  Aa | bAc | dc | bda 
A �  d 

4.21 Construct SLR parsing table for the following grammar. [In-course 1, 2008-2009. Marks: 10] 

S �  AS | b 
A �  SA | a  

4.22 The following grammar for if-then-else statements is proposed to remedy the dangling-else 
ambiguity: 

stmt �  if expr then stmt | matched_stmt 
matched_stmt �  if expr then matched_stmt else stmt | other 

Justify whether this grammar is ambiguous or not. If the grammar is still ambiguous, 
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rewrite the grammar by removing dangling-else ambiguity. [2003. Marks: 6] 

4.23 Construct the DFA, recognizing viable prefixes, that includes just those states of an LR(1) 
parser for the following grammar, that are pushed on the stack during a parse of the input 
y+++y. [In-course. Marks: 6] 

S �  A 
A �  A + A | B++ 
B �  y  

4.24 E �  E ‘|’ T | T  
T �  TF | F 
F �  F *  | F + | (E) | a | b  

i. Modify the grammar for LL(1) parser. 
ii.  Find First and Follow for each non-terminal of the modified grammar. 
iii.  What are the items of the state associated with the viable prefix E | T (E in SLR 

parsing for the grammar in (i). Show why the items are valid for the state. [In-course. 
Marks: 4 + 6 + 6 + 4] 

�
 �
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5.1 Define synthesized and inherited attributes. [2003. Marks: 2] 

 

5.2 What is L-attributed definition? “Every s-attri buted definition is L-attributed” – Justify 
your answer. [In-course 2, 2008-2009. Marks: 2 + 2] 

An SDD is called L-attributed definition if each attribute associated with the production bodies is 
either: 

 
An SDD is called s-attributed definition if every attribute is synthesized. On the other hand, L-

attributed definition can have inherited attributes besides synthesized attributes. Hence, every s-
attributed definition is also L-attributed. 

5.3 Explain how a translator for an s-attributed definition can be implemented as part of 
bottom-up parser. [In-course 2, 2008-2009. Marks: 3.5] 

When an SDD is s-attributed, its attributes can be evaluated in any bottom-up order of the nodes 
of the parse tree. It is often simple to evaluate the attributes by performing a post-order traversal of the 
parse tree and evaluating the attributes at a node N when the traversal leaves N for the last time. That 
is, the function postoder() defined below is applied to the root of the parse tree. 

postorder(N) { 
 for (each child C of N, from the left) 
  postorder(C); 
 evaluate the attributes associated with node N; 
} 

S-attributed definition can be implemented during bottom-up parsing, since a bottom-up parser 
corresponds to a post-order traversal. Post-order corresponds exactly to the order in which an LR-
parser reduces a production body to its head. 
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5.4 Write an algorithm for constructing a dependency graph from a given parse tree. [In-course 
2, 2008-2009. Marks: 3] 

Put each semantic rule in to the form b := f(c1, c2, …, ck). 

for  each node n in the parse tree do 
 for  each attribute a of the grammar symbol at n do 
  construct a node in the dependency graph for a; 
for  each node n in the parse tree do 
 for  each semantic rule b := f (c1, c2, … ,ck ) associated with the production used at n do 
  for  i := 1 to k do 
   construct an edge from the node for ci to the node for b; 

	
��������

5.1 Translate the arithmetic expression a*-(b+c) into 
i. A syntax tree 
ii.  Postfix notation 
iii.  Three-address code [2003. Marks: 4] 

 

5.2 Consider the following grammar for declaration of identifiers. [2003. Marks: 4] 

D �  TL 
T �  integer | real 
L �  L, id | id 

i. Write down a syntax directed definition to propagate the type information using 
inherited and synthesized attributes. 

ii. Rewrite the grammar so that the type information can be propagated using synthesized 
attributes only. 

i.  

5.3 A syntax directed definition for declaring identifiers is 
Productions Semantic Actions 
D �  TL L.in := T.type 
T �  int T.type := integer 
T �  real T.type := real 
L �  L1, id L1.in := L.in, 

addtype(id.entry, L.in) 
L �  id addtype(id.entry, L.in) 

i. Draw an annotated parse tree for the sentence real id1, id2, id3 
ii.  Draw the dependency graph for the parse tree in (i). [In-course 2, 2008-2009. Marks: 

3 + 3] 

a 

b c 

+ 

minus 

*  

abc+-* 

t 1 = b + c 
t 2 = minus t 1 
t 3 = a * t 2 

Postfix Notation Syntax Tree 3-Address Code 
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5.4 Consider the following SDD: 
Productions Rules 
T �  FT� T�.inh = F.val 

T.val = T�.syn 
T� �  *FT 1� T1�.inh = T�.inh × F.val 

T�.syn = T1�.syn 
T� �  ÎÎÎ Î  T�.syn = T�.inh 
F �  digit F.val = digit.lexval 

i. Draw the annotated parse tree for the expression 3*5*7 using the semantic rules 
given above. 

ii.  Draw the dependency graph. [2008. Marks: 2 + 1] 
 

i.  

ii.   
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6.1 What are the advantages of using intermediate code generation? [In-course 2, 2008-2009. 
Marks: 2.5] 

OR, Why would we be interested to generate intermediate code as the final product of the 
front end of a compiler? [2005. Marks: 2] 

With a suitably defined intermediate representation, a compiler for language i and machine j can 
then be built by combining the front end for language i with the back end for machine j. This approach 
to creating suite of compilers can save a considerable amount of effort: m × n compilers can be built by 
writing just m front ends and n back ends. 

6.2 Translate the expression (a+b)*(c+d)+(b+c)  into 

i. Quadruples 
ii.  Triples 
iii.  Indirect triples [ In-course 2, 2008-2009. Marks: 3] 

Discuss the comparative advantages and disadvantages of the above representations. [2007. 
Maks: 2] 

ALSO, What are the advantages and disadvantages of using indirect triple representation of 
3-address codes? [2004. Marks: 2] 

 
Comparative Advantages and Disadvantages: 

 Advantages Disadvantages 

Quadruples Instructions can be moved around without 
requiring changing all references to it. 

Takes more memory space than 
Triples. 

Triples Takes less memory space. Moving an instruction may require 
changing all references to it. 

Indirect 
Triples 

Instructions can be moved by reordering the 
instruction list, without affecting the triples 
themselves. Thus, changes to all references to 
the moved instruction are not needed. 

Takes more memory space than 
Triples. 

  
6.3 Find the expression that computes the relative address of the array element A[i1, i2, …, in], 

where A is a 10 × 10 × … × 10 array stored in row-major form. [ 2006. Marks: 2] 

6.4 What is backpatching? What is the advantage of backpatching? Explain with an example. 
[In-course 2, 2008-2009. Marks: 2 + 4] 

OR, Write short notes on backpatching. [2007. Marks: 3] 

Backpatching is the activity of filling up unspecified information of labels using appropriate 
semantic actions during the code generation process. 

In the code generation process, a separate pass is needed to bind jump labels to addresses. 

t 1 = a + b 
t 2 = c + d 
t 3 = t 1 * t 2 
t 4 = b + c 
t 5 = t 3 + t 4 

 op arg1 arg2 result 
0 + a b t 1 

1 + c d t 2 

2 * t 1 t 2 t 3 

3 + b c t 4 

4 + t 3 t 4 t 5 

 

 op arg1 arg2 

0 + a b 
1 + c d 
2 * (0)  (1)  

3 + b c 
4 + (2)  (3)  

 

instruction 

35 (0) 
36 (1) 
37 (2)  

38 (3) 
39 (4)  

 … 
 

 op arg1 arg2 

0 + a b 
1 + c d 
2 * (0)  (1)  

3 + b c 
4 + (2)  (3)  

 

3-Address Code Quadruples Triples Indirect Triples  



 

Backpatching merges the intermediate and target 

�����������	
�������� ��������������

6.1 Define static and dynamic type checking. [

6.2 What are type constructors? Name and explain the basic type constructors. [
+ 3] 

6.3 What is name and structural equivalence of type expressions? [

6.4 Write type expression for the following type: An array of pointers to reals, where array 
index ranges from 1 to 100. [2005. Marks: 2

6.5 Show whether the following recursive type expressions are equivalent or not: 
2] 

6.6 How do we determine the structural equivalence to types? [

ALSO, Give an algorithm for testing structural equivalence of type 
how it works? [2003. Marks: 3

6.7 How is encoding of type expressions used for checking structural equivalence of type 
expressions and what are its advantages (if any)? 

6.8 Consider the following grammar in a programming language. Here, P, D, T, S and E 
represent the program, the declarations, types, statements and expressions respectively.

P �  D; S 
D �  D; D | id : T
T �  char | int | array[num] of T
S ����������������	
��������
E �  literal | num | id | E[E]

Write down the syntax
declaration’s offset in the activation record. Define the basic types, type constructs and 
functions you use. [2004. Marks: 7

6.9 Let the following attribute grammar is used for type checking. [

Now consider the following declarations:

I: integer; 
A: array[20] of integer;
B: array[20] of ^integer;

10 

Backpatching merges the intermediate and target code generation into one pass.

�������������� �

Define static and dynamic type checking. [2006. Marks: 3] 

What are type constructors? Name and explain the basic type constructors. [

structural equivalence of type expressions? [In-course 2, 2007. Marks: 1

Write type expression for the following type: An array of pointers to reals, where array 
2005. Marks: 2] 

Show whether the following recursive type expressions are equivalent or not: 

How do we determine the structural equivalence to types? [In-course 2, 2007. Marks: 

Give an algorithm for testing structural equivalence of type 
2003. Marks: 3] 

How is encoding of type expressions used for checking structural equivalence of type 
expressions and what are its advantages (if any)? [2005, 2003; In-course 2, 2007

following grammar in a programming language. Here, P, D, T, S and E 
represent the program, the declarations, types, statements and expressions respectively.

D; D | id : T  
 char | int | array[num] of T  

����������������	
��������  
literal | num | id | E[E]  

Write down the syntax-directed translation for type checking and determine each 
declaration’s offset in the activation record. Define the basic types, type constructs and 

2004. Marks: 7] 

attribute grammar is used for type checking. [2008. Marks: 5

Now consider the following declarations: 

A: array[20] of integer;  
B: array[20] of ^integer;  

code generation into one pass. 

What are type constructors? Name and explain the basic type constructors. [2003. Marks: 2 

course 2, 2007. Marks: 1] 

Write type expression for the following type: An array of pointers to reals, where array 

Show whether the following recursive type expressions are equivalent or not: [2005. Marks: 

course 2, 2007. Marks: 2] 

Give an algorithm for testing structural equivalence of type expressions and explain 

How is encoding of type expressions used for checking structural equivalence of type 
course 2, 2007. Marks: 3] 

following grammar in a programming language. Here, P, D, T, S and E 
represent the program, the declarations, types, statements and expressions respectively. 

directed translation for type checking and determine each 
declaration’s offset in the activation record. Define the basic types, type constructs and 

2008. Marks: 5] 
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F: ^integer �  integer; 

Show how type checking is performed for the following expressions using the grammar 

(i) I := B[F(A[3])] 
(ii)  I := A[F(B[3])]  

	
����������������

6.1 Write an SDD to generate 3-address code for the following grammar: 

P �  S 
S �  assign | if (B) S1 | S1 S2 
B �  B1 || B2 | B1 && B2 | id1 rel id2 | true | false 

According to your SDD what code will be generated for the following expression? 

if (x < 100 || x > 200 && x != y) x = 0  [2008. Marks: 6 + 2] 
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Code for the expression if (x < 100 || x > 200 && x != y) x = 0 : 

 

6.2 Write a syntax-directed definition that generates three-address code for Boolean expression 
of the following grammar: 

E �  E 1 or E 2 | E 1 and E 2 | not E 1 | (E 1) | id 1 relop id 2 | true | false 

Using your definition, generate code for the expression 

m < n or p < q and s < t  [In-course 2, 2008-2009. Marks: 6 + 3.5] 

[This grammar is a subset of the grammar from the above question (6.1). Just replace B with E, || 
with or, && with and, ! with not, rel with relop in the following SDD.] 

Code for the expression m < n or p < q and s < t  : 

 if m < n goto L 1 
 goto L 2 

L2: if p < q goto L 3 
 goto L 4 
L3: if s < t goto L 5 
 goto L 6 

6.3 Write down a SDT scheme with backpatching to generate 3-address code for the following 
grammar: 

S �  if E then S | if E then S else S | while E do S | do S while E | {L} | A 
E �  E and E | E or E | not E | (E) | id relop id | tru e | false 
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L ��������  

Construct the annotated parse tree for the code segment below: 

while (i > j) and (k < m ) do 
 if a > b then s = s + 1 else s = s – 1 

Assume the arithmetic statements “s = s + 1” and “s = s – 1” above are generated from the 
non-terminal A in the above grammar. [2003. Marks: 8 + 4] 

[The grammars are similar to the following grammars:] 

 

 

6.4 The following grammar generates the assignment statements of single dimensional array and 
identifiers 
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S �  E = E  
E �  E + E | id | id[E] 

i. Write a syntax-directed translation scheme for the grammar to produce 3-address 
codes. 

ii.  Draw the annotated parse tree for the statement: x[i] = x[x[i]] + i , according to 
your translation scheme. Assume the array x[]  is a 10 element array where each 
element occupies 2 bytes. [2007. Marks: 5 + 5] 

6.5 Consider the following grammar: [2007, 2005. Marks: 8 + 6] 

S �  if E then S | for id = NUM to NUM Step by NUM S| { L} | A 
E �  E or E | id relop id | id relop NUM 
L ��������  

i. Write down a syntax-directed translation scheme with backpatching to generate 3-
address codes for the grammar. Assume A generates assignment statements (e.g. a = a + 
1) that are represented by a single quad. The semantics of “for”: id will be initialized to 
the first NUM, incremented in each iteration by the amount specified by the third NUM 
up to the second NUM. The token NUM is a signed integer. 

ii.  According to your translation scheme for the grammar in question (i), construct the 
annotated parse tree for the following code fragment. Assume the 3-address codes start 
from quad 100. 

for a = 1 to 10 step by 2 { 
 if b > 10 or a < c then b = b – 1; 
 c = c – b 
} 
a = a + 1 

6.6 Consider the following grammar: [2004. Marks: 8 + 6] 

S �  if E then S else S | for (A; E; A) S | {L} | A 
E �  E and E | E or E | id relop id | id relop NUM 
L ��������  

i. Write down a syntax-directed translation scheme with backpatching to generate 3-
address codes for the grammar. Assume A generates assignment statements (e.g. a = a + 
1) that are represented by a single quad and “for” has the same semantics of C’s for 
loop. 

ii.  According to your translation scheme for the grammar in question (i), construct the 
annotated parse tree for the following code fragment. Assume the priority of ‘and’ is 
greater than that of ‘or’ and the 3-address codes start from quad 100. 

if (b > 10 or a < d and a > c) then b = b – 1 else d = d + 1 
a = a + 1 

iii.  According to your translation scheme for the grammar in question (i), construct the 
annotated parse tree for the following code fragment. Assume the priority of ‘and’ is 
greater than that of ‘or’ and the 3-address codes start from quad 20. [In-course 2, 2007. 
Marks: 5] 

a = a + 1; 
for (b = 0; b > a; b = b + 1) { 
 if b < c and b > 10 then b = c – 1 
 else b = c - 2 
} 
c = 2; 

6.7 Consider the following grammar: [2006. Marks: 8 + 6] 

S �  if E then S | repeat S until E| {L} | A 
E �  E or E | id relop id 
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L �������� S 

i. Write down a syntax-directed translation scheme with backpatching to generate 3-
address codes for the grammar. Assume A generates assignment statements (e.g. a = a + 
1) that are represented by a single quad and relop represents any relational operator. 

ii.  According to your translation scheme for the grammar in question (i), construct the 
annotated parse tree for the following code fragment. Assume the 3-address codes start 
from quad 10. 

repeat { 
 a = a + 1; 
 if b < 10 or a > b then b = b + 1 
} until (a > c) 

6.8 Consider the following grammar: [2006. Marks: 8 + 6] 

S �  if E then S | repeat S until E| {L} | A 
E �  E and E | id relop id | (E) 
L ��������  

i. Add production to generate “break” and “continue” statements. Write down a syntax-
directed translation scheme with backpatching to generate 3-address codes for the 
modified grammar. Assume: 

a. A generates assignment statements (e.g. a = a + 1) that are represented by a single 
quad. 

b. “break” and “continue” statements have the semantics that those statements have 
in C language. 

ii.  According to your translation scheme for the grammar in question (i), construct the 
annotated parse tree for the following code fragment. Assume the 3-address codes start 
from quad 100. 

repeat { 
 if (a > b and a < c) then break; 
 a = a – b 
} until (a > d) 
a = a + 1 

6.9 The following grammar generates expressions formed by applying an arithmetic operator + 
to integer and real constants. When two integers are added, the resulting type is integer, 
otherwise, it is real: 

E �  E + T | T 
T �  num . num | num 

Give an SDD to determine the type of each sub-expression. [2006. Marks: 4] 

�
 �
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8.1 Briefly describe the issues in the design of a code generator. [In-course 3, 2008-2009. Marks: 
4] 

Issues in the design of a code generator: 

1. Input to the Code Generator 

 
2. The Target Program 

 
3. Instruction Selection 

 
4. Register Allocation 
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5. Evaluation Order 

 

8.2 Write short notes on the following: [2003. Marks: 2 × 4] 

i. Basic blocks 
ii. Peephole optimization 

 
i. Basic blocks are maximal sequences of consecutive three-address instructions with the 

properties that 

a. The flow of control can only enter the basic block through the first instruction in the 
block. That is, there are no jumps into the middle of the block. 

b. Control will leave the block without halting or branching, except possibly at the last 
instruction in the block. 

ii.   

8.3 With the help of an example describe the “next-use” algorithm. [In-course 3, 2008-2009. 
Marks: 4.5] 

• Input: A basic block B of three-address statement. Initially the symbol table shows all 
nontemporary variables in B as being live on exit. 

• Output: At teach statement i: x = y + z in B, attach to I the liveness and next-use information of 
x, y, z. 

• Method: Start at the last statement in B and scan backwards. At each statement i: x = y + z in 
B, do 

– Attach to statement i the information currently found in the symbol table regarding the 
next use and liveness of x, y, z. 

– In the symbol table, set x to “not live” and “no next use” (i.e., “dead”) 

– In the symbol table, set y and z to “live” and the next uses of y and z to i. 

Example: 
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Table: 

 Initial Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 
t1 D D D D D D D D D L(2) D 
t2 D D D D D D L(5) L(5) L(5) D D 
t3 D D D D D D D L(4) D D D 
t4 D D D D D D L(5) D D D D 
t5 D D D D D L(6) D D D D D 
t6 D D D D L(7) D D D D D D 
t7 D D L(9) D D D D D D D D 
a L(0) L(0) L(0) L(0) L(0) L(0) L(0) L(0) L(0) L(2) L(2) 
b L(0) L(0) L(0) L(0) L(0) L(0) L(0) L(4) L(4) L(4) L(4) 
prod L(0) L(0) L(0) L(0) D L(6) L(6) L(6) L(6) L(6) L(6) 
i L(0) L(10) D L(8) L(8) L(8) L(8) L(8) L(3) L(3) L(1) 

  
8.4 Write down the heuristic for graph coloring. What options do we have when an interference 

graph is found not to be k-colorable when there are k registers in the target machine? How do 
we determine the cost of fixing that problem? [In-course. Marks: 3 + 3] 

ALSO, Describe the heuristic used to color an interference graph. [In-course. Marks: 2.5] 

 

	
��������

8.1 Describe the code generation algorithm for a 2-address machine. Generate the code for the 
following code segment according to the algorithm. [In-course. Marks: 6 + 4] 

T1 := a + c 
T2 := b * T1 
T3 := T1 – T2 
T4 := T3 
a  := T3 * T4 
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8.2 Consider a hypothetical machine with four registers R1, R2, R3, R4 and six addressing 
modes with the following costs. 

Addressing Mode Cost 
Absolute Memory Address 1 
Register 0 
Literal 0 
Indirect Register 1 
Indirect Plus Address 1 
Double Indirect 2 

Now use an efficient algorithm to generate code for the target machine from the following 
block of 3-address codes: 

t1 := a + b 
t2 := t1 * c 
t3 := t2 – t1 
b  := t3 

Calculate the cost of generated code and compare with cost of code generated with naïve 
approach to code generation. [2008. Marks: 8] 

8.3 Draw the flow graph for the following program: [In-course 3, 2008-2009. Marks: 4] 

begin 
 prod := 0; 
 i := 1; 
 do begin 
  prod := prod + a[i] * b[i]; 
  i := i + 1; 
 end 
 while (i <= 20); 
end  

8.4 Draw the flow graph for the following sequence of 3-address codes. [2008. Marks: 3] 

(1)  
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

i = 0  
t1 = 10 
t2 = i < t1 
if False t2 goto (15) 
t3 = 4 
t4 = t3 * i 
t5 = a + t4 
if t5 >= 100 goto (15) 

(9)  
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

if t4 <= 20 goto (5)  
t6 = z[t5] 
*(t7) = t6 
t8 = 1 
i = i + t9 
goto (2) 
return 

 

8.5 For the following code fragment, determine the next-use information (assume that all the 
variables are live and all temporaries are dead at the end of the block). [2008. Marks: 5] 

(1)  
(2) 
(3) 
(4) 
(5) 

t6 := 4 * i  
x := a[t6] 
t7 := 4 * i 
t8 := 4 * j 
t9 := a[t8] 

( 6)  
(7) 
(8) 
(9) 

a[t7] : = t9  
t10 := 4 * j  
b[t10] := x 
goto .... 

 

8.6  Consider the following block of 3-address code: 

t1 := z * x 
t2 := z + t1 
y  := t2 * z 
z  := x + y 
t1 := z * x 
y  := x / t1 

Use the graph coloring algorithm for register allocation for the block of code given above. 
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Assume the number of registers is R = 3 and all temporaries are dead at the end of the block. 
[2008. Marks: 6] 

Liveness Information: Interference Graph with Coloring: 

t1 := z * x {x, z} 
t2 := z + t1 {x, z, t1} 
y  := t2 * z {x, z, t2} 
z  := x + y {x, y} 
t1 := z * x {x, z} 
y  := x / t1 {x, z, t1} 
 {x, y, z} 

Stack: t1, z, t2, x, y 

 
  

x 

y 

 z  t1 

t2 
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9.1 What do you understand by peephole optimizations? [In-course 3, 2008-2009. Marks: 4] 

 

9.2 What is a copy statement? When can we eliminate copy statements? Give an example. [2007, 
2004. Marks: 4] 

Assignments of the form u = v are called copy statements. 

We can eliminate copy statements when there are common sub-expressions in statements. 

Example: 

 

9.3 What is meant by dead code? Give examples. [2007. Marks: 2] 

Dead code are statements that compute values that never get used. 

For example, suppose a variable debug is set to FALSE at various points in the program, and used 
in statements like if (debug) print… If copy propagation replaces debug by FALSE, then the print 
statement is dead because it cannot be reached. Hence, both the test and the print operation can be 
eliminated from the object code. 
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9.4 In order to generate optimized code, you have the options to do dead-code elimination, copy 
propagation, CSE (Common Sub-expression Elimination), global register allocation and 
instruction scheduling. In which order would you perform these operations? Justify your choice 
with proper reasoning. [2006. Marks: 5] 

1. First of all, copy propagation should be performed. It would increase the possibility of finding 
common sub-expressions. 

2. Then, CSE should be performed. 
3. After these two steps, there would be a good possibility of existence of dead-code. So, at this 

stage, dead-code elimination should be performed. 
4. Then, instruction scheduling might increase the chance of a more efficient register allocation. 

So, it should be performed. 
5. Finally, Register allocation should be applied. 

9.5 Define UD- and DU-chains. What purposes do they serve? [2007, 2004. Marks: 4] 

UD-Chain: Purpose of UD-Chain: 

      
DU-Chain: Purpose of DU-Chain: 

 

9.6 What are the techniques to optimize a loop? Describe any one of them. [In-course 3, 2008-
2009. Marks: 3.5] 

ALSO, What is the basic loop optimization technique? [2004. Marks: 1] 

The techniques to optimize a loop are as follows: 

1. Code Motion 
2. Induction-Variable Elimination 
3. Reduction in Strength 

The basic loop optimization technique is code motion. If an expression is computed within a loop 
and it does not depend on variables that change in the loop, then it can be moved to just before the 
loop. 

Example: 
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9.7 Why would you be concerned to find whether a flow graph is reducible or not? [2007. 
Marks: 2] 

OR, For loop optimization, why are we interested in determining whether a flow graph is 
reducible or not? [2004. Marks: 2] 

 

9.8 Write down an algorithm for detecting loop invariant computations. [2007, 2005. Marks: 6] 

	
��������

9.1 Consider the following fragment of intermediate code: 

y = w 
z = 4 
v = y * y 
u = z + 2 
r = w ** 2 //this is exponentiation 
t = r * v 
s = u * t 

Assume the only variable live at the exit is s. Show the result of applying constant 
propagation, algebraic simplification, common sub-expression elimination, constant folding, 
copy propagation and dead code elimination as  much as possible to this code. You should 
explain the changes in each step. [2007, 2005. Marks: 6] 

y = w 
z = 4 
v = y * y 
 = w * w [Copy Propagation] 
u = z + 2 
 = 4 + 2 [Constant Propagation] 
 = 6 [Constant Folding] 
r = w ** 2 
 = w * w  [Algebraic Simplification] 
 = v [Common Sub-expression Elimination] 
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t = r * v 
 = v * v [Copy Propagation] 
s = u * t 
 = 6 * t [Constant Propagation] 

After dead-code elimination: 

v = w * w 
t = v * v 
s = 6 * t   

9.2 Consider the following fragment of intermediate code: 

w = 2 
u = z 
y = w + 1 
v = y * y 
r = v ** 2 //this is exponentiation 
t = u * u 
s = u * t 
x = y * y 

Assume the only variables live at the exit are s, x. Show the result of applying constant 
propagation, algebraic simplification, common sub-expression elimination, constant folding, 
copy propagation and dead code elimination as  much as possible to this code. You should 
explain the changes in each step. [In-course. Marks: 4] 

w = 2 
u = z 
y = w + 1 
 = 2 + 1 [Constant Propagation] 
 = 3 [Constant Folding] 
v = y * y 
 = 3 * 3 [Constant Propagation] 
 = 9 [Constant Folding] 
r = v ** 2 
 = v * v  [Algebraic Simplification] 
 = 9 * 9 [Constant Propagation] 
 = 81 [Constant Folding] 
t = u * u 
 = z * z [Copy Propagation] 
s = u * t 
 = z * t [Copy Propagation] 
x = y * y 
 = 3 * 3 [Constant Propagation] 
 = 9 [Constant Folding] 

After dead-code elimination: 

t = z * z 
s = z * t 

 x = 9  

9.3 For the following code fragment, list all the dependencies between statements and draw the 
dependency graph. [2006. Marks: 3] 

(1)  
(2) 
(3) 
(4) 

j = 4  
k = j + 1 
j = 6 
m = k * j 

( 5)  
(6) 
(7) 

m = m + 2  
k = j + l  
j = k + j  

List of dependencies between statements: 

1. (2) depends on (1) for value of j. 
2. (4) depends on both (2) and (3) for values of k and j respectively. 
3. (5) depends on (4) for value of m. 
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4. (6) depends on (3) for value of j. 
5. (7) depends on both (3) and (6) for values of j and k respectively. 

Dependency Graph: 

Let, for statements A and B,                       denotes that A is dependent on B. 

 

9.4 Consider the following code fragment. [2003. Marks: 3 + 2 + 7] 

begin 
 for i := 1 to n do 
  for j := 1 to n do 
   begin 
    c[i,j] := 0; 
    for k := 1 to n do 
     c[i,j] = c[i,j] + a[i,k] * b[k,j]; 
   end 
end 

i. Assume a, b and c are allocated static storage and there are 2 bytes per word in a byte 
addressable memory. Produce three-address code for the code fragment. 

ii.  Construct the flow graph from the three address statement. 
iii.  Optimize the code by eliminating common sub-expressions, eliminating dead-code 

and different loop optimization techniques. 

9.5 Consider the following code segment. [2006. Marks: 3 + 5 + 4] 

(1)  
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

i = b + c  
b = 10 
k = 9 
a = b + c 
d = e + f 
k = j + 1 
if p > 10 goto (9) 
goto (11) 
e = 5 

(10)  
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 

goto (13)  
g = -k 
f = d + 4 
c = 25 
h = e + 10 
j = b + j 
if q > 10 goto (4)  
exit 

i. Draw the control flow graph (CFG). 
ii.  Perform global CSE and draw the CFG for the code that results from CSE. You need 

not to show the computation for finding available expressions. Only show the 
available expressions at the input of each basic block. 

iii.  Find all natural loops and identify the loop invariant statements. Which statements 
are safe to be moved to the loop’s pre-header and why? 

9.6 Consider the code segment below: [2004. Marks: 3 + 6] 

(1)  
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

m = 5  
f = 0 
g = 1 
if m < 10 goto (6) 
return m 
i = 2 
if i < m goto (9) 

(8)  
(9) 
(10) 
(11) 
(12) 
(13) 

return g  
h = f – g  
g = f 
f = h 
i = i + 1  
goto (7) 

i. Construct a flow graph. 
ii.  Find the live variables at the end of each block. 

4 5 

3 

6 

7 

1 2 

A B 
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 IN[B] 0 OUT[B] 1 IN[B] 1 OUT[B] 2 IN[B] 2 OUT[B] 3 IN[B] 3 

B1 { } { f, g, m } { } { f, g, m } { } { f, g, m } { }  

B2 { } { } { m } { } { m } { } { m } 

B3 { } { f, g, i, m }  { f, g, m } { f, g, i, m }  { f, g, m } { f, g, i, m }  { f, g, m } 

B4 { } { f, g, i } { f, g, i, m }  { f, g, i, m } { f, g, i, m } { f, g, i, m } { f, g, i, m } 

B5 { } { } { g } { } { g } { } { g } 

B6 { } { } { f, g, i } { f, g, i, m }  { f, g, i, m } { f, g, i, m } { f, g, i, m } 

  
\\\ \  Live variables after each block: 

B1: { f, g, m } 
B2: { } 
B3: { f, g, i, m } 
B4: { f, g, i, m } 
B5: { } 
B6: { f, g, i, m } 

[Points to be noted from this answer: 

1. There is no edge from the block containing return m to the following block, because after 
returning from a block, the program never flows below in the block. The same case holds for 
return g, too. This is according to the rule of putting an edge in flow graph (from page 529, 
bullet point no. 2). 

2. As there is no edge outgoing from return m, hence its OUT is empty. However, its IN is not 
empty as it uses m. 

3. Block B4 should be counted – even though there is no variable assignment statement. That’s 
because the compiler must know to before comparing i < m whether both are live or not. And 
after the end of the block, should i and m be dead and discarded or not. Similarly, m in B1 
should also be counted. 

4. m is not used in B1 as can be mistakenly assumed from the if  instruction. That’s because m is 

m = 5 
f = 0 
g = 1 
if m < 10 goto B3 

return m 

i = 2 

if i < m goto B6 

return g 

h = f – g 
g = f 
f = h 
i = i + 1 
goto B4 

B1 

B3 

B4 

B6 

use B1 = {} 
def B1 = {m, f, g} 

use B3 = {} 
def B3 = {i} 

use B4 = {i, m} 
def B4 = {} 

use B6 = {f, g, i} 
def B6 = {f, g, h, i} 

B2 

B5 

use B2 = {m} 
def B2 = {} 

use B5 = {g} 
def B5 = {} 
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defined before it is used in this block. From the definition of useB (from page 609, point 2), m 
is not used. Similarly, h is not used in B6. (Also see page 609, the paragraph after Example 
9.13 for further clarification.) 

5. Although usually live variable analysis includes a block containing EXIT , in this particular 
case, there should be no exit block. That’s because the last block B6 includes as its last 
statement an unconditional jump – goto B3, after executing which the program control will 
always flow to B4 and never to any other block.] 

9.7 Consider the following sequence of 3-address codes: [In-course. Marks: 4 + 6] 

(1)  
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

e = e – b 
d = a * c 
if e < d goto (1) 
i = e + f 
j = a + b 
c = c * 2 
if c > d goto (9) 

(8)  
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 

goto (11)  
g = a * c 
goto (13) 
i = d * d 
j = c + 1 
if i > j goto (5)  
exit 

i. Draw the flow graph. 
ii.  Compute live variables at the end of each block using the iterative solution to dataflow 

equations for live variable analysis. 

9.8 Consider the following sequence of 3-address codes: [In-course. Marks: 2 + 6 + 2] 

(1)  
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

c = a + b 
d = a * c 
e = d * d 
i = 1 
f[i] = a + b 
c = c * 2 
if c > d goto (9) 

(8)  
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 

goto (11)  
g[i] = a * c 
goto (13) 
g[i] = d * d 
i = i + 1 
if i > 10 goto (5)  
exit 

i. Draw the flow graph. 
ii.  Compute the available expressions at the beginning of each block using the iterative 

solution to dataflow equations for available expressions. 
iii.  Draw the flow diagram after global CSE. 

9.9 Consider the following sequence of 3-address codes: [2007. Marks: 4 + 6] 

(1)  
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

a = a – d 
f = b * d 
c = a + b 
d = c – a 
if d > x goto (7) 
d = b * d 
b = a + b 

(8)  
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 

e = c – a 
if e > 10 goto (3)  
goto (13) 
a = b * d 
b = a – d 
if b > 10 goto (1)  
exit 

i. Draw the flow graph. 
ii.  Compute live variables at the end of each block using the iterative solution to dataflow 

equations for live variable analysis. 
iii.  Show the execution of the algorithm solving the data flow equations set up for available 

expressions. [In-course. Marks: 6] 

9.10 Consider the following sequence of 3-address codes: [2005. Marks: 2 + 5] 

(1)  
(2) 
(3) 
(4) 
(5) 
(6) 

i = m – 1 
j = n 
a = u1 
i = i + 1 
j = j - 1 
if i > j goto (8) 

(7)  
(8) 
(9) 
(10) 
(11) 

goto (9)  
a = u2 
i = u3 
if u3 > 0 goto (4)  
exit 
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i. Draw the flow graph. 
ii.  Find the definitions reaching the end of each block by iteratively solving the dataflow 

equations for reaching definitions. 

 

 

\\\ \  Definitions reaching at the end of each block: 

B1: { d1, d2, d3 } 
B2: { d3, d4, d5, d6 } 
B3: { d4, d5, d6 } 
B4: { d3, d5, d6, d7 } 

9.11 Consider the following flow graph: [In-course 3, 2008-2009. Marks: 4 + 2] 

i. Compute UD and DU-chain for the flow graph. 
ii.  Compute live variables at the end of each block of the flow 

graph. 
 

i. UD-Chain: 

 
DU-Chain: 

[ ·  ,  ·  ] 

[ ·  ] 
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9.12 Consider the following flow graph: [2008. Marks: 4 + 2 + 2 + 4 + 4] 

 
i. Compute UD and DU-chain for the above flow graph. 
ii.  Compute live variables at the end of each block of the flow graph. 
iii.  Compute available expressions for the flow graph. 
iv. Is any constant folding possible in the flow graph? If so, do it. 
v. Are there any common sub-expressions in the flow graph? If so, do it. 

9.13 Consider the CFG below where only definition (v = …) 
and use (… = v) of the interesting variables are shown. 

i. List the webs as webi = {list of statements Sks in 
webi}. 

ii.  Draw the interference graph. 
iii.  If coloring is possible and if you have three registers 

R0, R1, R2, identify for each node the allocated 
register allocation. Assume the variable k cannot be 
allocated to register R2. Otherwise, which node 
would you choose to spill and why? [2006. Marks: 2 
+ 3 + 3] 

[ ·  ] 
[ ·   ] 

[ ·  ] 
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9.14 Consider the CFG below where only definition (v = …) 
and use (… = v) of the interesting variables are shown. 

i. List the webs as webi = {list of statements Sks in 
webi}. 

ii.  Draw the interference graph. 
iii.  If you have three registers, show the code after 

register allocation (if coloring is possible). [2005. 
Marks: 2 + 3 + 3] 

 


