REFRESHING MEMORY: THE BASICS

	1.1
	Example of standard I/O in C:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 printf("Enter your roll number and name: ");
 int roll;
 char name[80];
 scanf("%d %s", &roll, name);
 printf("\nYour name: %s\nYour roll number: %d", name, roll);

 return (EXIT_SUCCESS);
}

	1.2
	String input:
· [image:]scanf("%s")	– Discards the characters after first occurrence of a whitespace.
· [image:]gets() 	– Takes all the characters until Enter key is pressed.
· [image:]Mixing scanf("%s") with gets() is dangerous.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 char name[80];
 printf("Enter your full name: ");
 gets(name);
 printf("Your full name is: %s", name);

 return (EXIT_SUCCESS);
}

	1.3
	Control Structures (i.e. loops and conditional statements) & Arrays:
[image:]Just like in Java.

	1.4
	Constant Declaration Syntax:
const int SOME_CONSTANT = 5;
If a const is placed inside a function its effect would be localized to that function, whereas, if its Is placed outside all functions then its effect would be global. We cannot exercise such finer control while using a #define.

	1.5
	Data Types in C (16-Bit Platform) & Format Specifiers for printf() & scanf():
[image:]

	1.6
	Functions:
Two situations:
· Function definition comes before the function call
· Function definition comes after the function call

[image:]Situation 1: Function definition comes before the function call – no problem at all!

#include <stdio.h>
#include <stdlib.h>

void print() { //Can also be used: void print(void) [C++ style, though…]
 printf("Hello World :P");
}

int main(int argc, char** argv) {
 print();
 return (EXIT_SUCCESS);
}

[image:]Situation 2: Function definition comes after the function call – must need function declaration (prototype).

#include <stdio.h>
#include <stdlib.h>

void print();	//Prototype for the function print()

int main(int argc, char** argv) {
 print();
 return (EXIT_SUCCESS);
}

void print() {
 printf("Hello World :P");
}

[image:]Tip: Both of the following prototypes are valid:
int some_function(int param1, char *param2);
int some_function(int, char*);

[image:]POINTERS
	2.1
	Basic Concepts:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 int a = 5;
 printf("Value of a = %d\n", a);
 printf("Address of a = %d\n", &a);
 printf("Value of a = %d\n\n", *(&a)); // Or: *&a

 int *b;
 b = &a;
 printf("Address of a = %d\n", b); // b = &a
 printf("Value of a = %d\n\n", *b); // *b = *(&a) = a

 int **c;
 c = &b;
 printf("Address of b = %d\n", c); // c = &b
 printf("Address of a = %d\n", *c); // *c = *(&b) = b = &a
 printf("Value of a = %d\n\n", **c); // **c = *(*c) = *(*(&b)) = *b = *(&a) = a

 return (EXIT_SUCCESS);
}

/*
 Sample Output:

 Value of a = 5
 Address of a = 2280676
 Value of a = 5

 Address of a = 2280676
 Value of a = 5

 Address of b = 2280672
 Address of a = 2280676
 Value of a = 5

 [PRESS ENTER TO CLOSE WINDOW]

 */
[image:] Note: The declaration float *f does not mean that f is going to contain a floating-point value. What it means is, f is going to contain the address (which is always an integer) of a floating-point value.
Similarly, char *ch means that ch is going to contain the address of a char value.

	2.2
	Passing addresses to functions:
	Call-By-Value
	Call-By-Reference

	#include <stdio.h>
#include <stdlib.h>

void swap(int x, int y) {
 int temp = y;
 y = x;
 x = temp;

 printf("x = %d, y = %d\n", x, y);
}

int main(int argc, char** argv) {
 int a = 5, b = 10;
 swap(a, b);
 printf("a = %d, b = %d\n\n", a, b);

 return (EXIT_SUCCESS);
}
	#include <stdio.h>
#include <stdlib.h>

void swap(int *x, int *y) {
 int temp = *y;
 *y = *x;
 *x = temp; // Don’t use “x = temp;”
}

int main(int argc, char** argv) {
 int a = 5, b = 10;
 swap(&a, &b);
 printf("a = %d, b = %d\n\n", a, b);

 return (EXIT_SUCCESS);
}

	2.3
	Returning pointer from functions:
#include <stdio.h>
#include <stdlib.h>

int* sqr(int i) {
 static int result = i * i;
 return &result;
}

int main(int argc, char** argv) {
 int *p = sqr(5);
 printf("Address of p = %d\n", p); // Output: 4206624
 printf("Value of p = %d\n\n", *p); // Output: 25

 return (EXIT_SUCCESS);
}

· int* sqr(int i) means sqr() is a function which receives an int value and returns an int pointer.
· If the variable result weren’t static, then the second printf() won’t have printed 25. That’s because, when the control comes back from sqr(), result dies. So, even if we have its address in p, we can’t access result since it’s already dead.
· Using 'call by reference' intelligently, we can make a function return more than one value at a time, which is not possible ordinarily.

	2.4
	Pointers & Arrays:
One Dimensional Array:
	Passing Array Using Reference
	Passing Array Using Pointer

	#include <stdio.h>
#include <stdlib.h>

void parse(int arr[], int no_of_elements) {
 for (int i = 0; i < no_of_elements; i++) {
 printf("%d ", arr[i]);
 }
 printf("\n\n");
}

int main(int argc, char** argv) {
 int arr[] = {1, 2, 3, 4};
 int no_of_elements = sizeof(arr) / sizeof(arr[0]);
 parse(arr, no_of_elements);

 return (EXIT_SUCCESS);
}
	#include <stdio.h>
#include <stdlib.h>

void parse(int *arr, int no_of_elements) {
 for (int i = 0; i < no_of_elements; i++) {
 printf("%d ", *(arr + i));
 }
 printf("\n\n");
}

int main(int argc, char** argv) {
 int arr[] = {1, 2, 3, 4};
 int no_of_elements = sizeof(arr) / sizeof(arr[0]);
 parse(arr, no_of_elements);

 return (EXIT_SUCCESS);
}

· The name of an array represents its base address.
· The decalaration int (*p)[5]; means that p is a pointer to a one-dimensional array of 5 elements.
· Every time a pointer is incremented, it points to the immediately next location of its type.
· Only the following two operations can be performed on a pointer:
(a) Addition of a number to a pointer.
(b) Subtraction of a number from a pointer.
· [image:]It’s wrong to use arr++ in the above program, since arr is a constant. It’s like using 5++. To increment the value of arr, it must be copied to a pointer variable. For example:
int *p = arr;
p++; 		 // Same as p = arr + 1;

Two Dimensional Array:
	Passing Array Using Reference
	Passing Array Using Pointer

	#include <stdio.h>
#include <stdlib.h>

void parse(int arr[][4], int rows) {
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < 4; j++) {
 printf("%d ", arr[i][j]);
 }
 printf("\n");
 }
 printf("\n");
}

int main(int argc, char** argv) {
 int arr[][4] = {{1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 0, 1, 2}};
 int rows = sizeof(arr) / sizeof(arr[0]);
 parse(arr, rows);

 return (EXIT_SUCCESS);
}
	#include <stdio.h>
#include <stdlib.h>

void parse(int *arr, int rows, int cols) {
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < cols; j++) {
 printf("%d ", *(arr + i * cols + j));
 }
 printf("\n");
 }
 printf("\n");
}

int main(int argc, char** argv) {
 int arr[][4] = {{1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 0, 1, 2}};
 int rows = sizeof(arr) / sizeof(arr[0]);
 int cols = sizeof(arr[0]) / sizeof(arr[0][0]);
 parse(arr[0], rows, cols); //or, *arr

 return (EXIT_SUCCESS);
}

 (
|
 1
st
 1-D Array
|
 2
nd
 1-D Array
|
 3
rd
 1-D Array
|
2201

2205 2209

2213 2217 2221

2225 2229 2233 2237

 2241 2245
1
2
3
4
5
6
7
8
9
0
1
2
)

Arrays of Pointers:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 int *arr[3];
 int x = 5, y = 6, z = 7;

 arr[0] = &x;
 arr[1] = &y;
 arr[2] = &z;

 for (int i = 0; i < 3; i++) {
 printf("%d ", *(arr[i]));
 }

 return (EXIT_SUCCESS);
}

	2.5
	Dynamic Memory Allocation:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 printf("Enter the number of students: ");
 int n, *p;
 scanf("%d", &n);
 p = (int*) malloc(n * sizeof(int)); // Or, p = (int*) calloc(n, sizeof(int))
 if (p == NULL) {
 printf("\nMemory allocation failed.");
 exit(1);
 }
 printf("Enter the marks using Enter key:\n");
 for (int i = 0; i < n; i++) {
 scanf("%d", (p + i));
 }
 return (EXIT_SUCCESS);
}

	2.6
	Pointers and Strings:
Basic ideas:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 // Printing a string using pointers
 char name[] = "Somebody";
 char *x;
 x = name;
 while (*x != '\0') {
 printf("%c", *x);
 x++;
 }

 // A string (character array) cannot be assigned to another string,
 // but a pointer to a string can be assigned to another pointer.
 char str1[] = "Hi";
 char str2[3];
 char *si = "Hello";
 char *di;
 //str2 = str1; 	//Error
 di = si; 	//OK

 // Once a string has been defined, it cannot be initialized to another
 // set of characters. But such an operation is valid with char pointers.
 char str[] = "Hi";
 //str = "Bye" 	//Error
 char *y = "Hi";
 y = "Bye"; 	//OK

 //However, a constant string (or pointer) cannot be altered...
 char *p = "Hi"; //Pointer is variable, so is string
 *p = 'B'; 	//OK
 p = "Bye"; 	//OK
 const char *q = "Hi"; //String is constant, pointer is not
 //*q = 'B'; 	//Error
 q = "Bye"; 	//OK
 char *const r = "Hi"; //Pointer is constant, string is not
 *r = 'B'; 	//OK
 //r = "Bye"; 	//Error
 const char *const s = "Hi"; //String is constant, so is pointer
 //*s = 'B'; 	//Error
 //s = "Bye"; 	//Error

 return (EXIT_SUCCESS);
}
Array of Strings (or, array of pointers to arrays of characters):
#include <stdio.h>
#include <stdlib.h>
void swap(char **str1, char **str2) {
 char *temp = *str2;
 *str2 = *str1;
 *str1 = temp;
}

int main(int argc, char** argv) {
 char *names[] = {"Somebody", "Nobody"}; // In array notation, char names[][9];
 printf("Original order: %s %s\n", names[0], names[1]); // Or, *(names),*(names+1)

 // Swap names
 char *temp = names[1];
 names[1] = names[0];
 names[0] = temp;
 printf("New order: %s %s\n", names[0], names[1]);

 // Swap back through function
 swap(names, names + 1); 	// Or, swap(&names[0], &names[1]);
 printf("After reorder: %s %s\n\n", names[0], names[1]);
 return (EXIT_SUCCESS);
}
Printing the command-line arguments:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 int i;
 for (i = 0; i < argc; i++) {
 char *p = argv[i]; 	// Or, char *p = *(argv + i);
 while (*p != '\0') {
 printf("%c", *p);
 p++;
 }
 printf("\n");
 }

 return (EXIT_SUCCESS);
}

	2.7
	Pointers & Structures:
Pointers & Structures without using typedef:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 struct book {
 char name[255];
 char author[255];
 float price;
 };
 struct book b1 = {"C Revisited", "Sharafat", 0.0};
 printf("%s, %s, %f\n", b1.name, b1.author, b1.price);
 struct book *ptr = &b1;
 printf("%s, %s, %f\n", ptr->name, ptr->author, ptr->price);
 return (EXIT_SUCCESS);
}
Pointers & Structures using typedef:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 typedef struct {
 char name[255];
 char author[255];
 float price;
 } BOOK;
 BOOK b1 = {"C Revisited", "Sharafat", 0.0};
 printf("%s, %s, %f\n", b1.name, b1.author, b1.price);
 BOOK *ptr = &b1;
 printf("%s, %s, %f\n", ptr->name, ptr->author, ptr->price);
 return (EXIT_SUCCESS);
}

	2.8
	Pointers to Functions:
#include <stdio.h>
#include <stdlib.h>

double sqr(float num) {
 return num * num;
}

int main(int argc, char** argv) {
 double (*func_ptr)(float);
 func_ptr = sqr;
 // Or, double (*func_ptr)(float) = sqr;
 double result = (func_ptr)(5.5);
 printf("%lf", result);

 return (EXIT_SUCCESS);
}

I/O

	3.1
	I/O Functions Reference:

File manipulation functions:
· FILE *fopen(const char *filename, const char *mode)
Opens a file for reading or writing.
filename – Name of the file (might include directory name).
mode – One of the following modes:
	r
	Open for reading. The file must already exist.

	w
	Open for writing. If the file exists, its contents are overwritten. Otherwise, new file is created.

	a
	Open for appending. If the file exists, contents are appended. Otherwise, new file is created.

	r+
	Open for both reading and writing. [File existing conditions are the same as r.]

	w+
	Open for both reading and writing. [File existing conditions are the same as w.]

	a+
	Open for both reading and appending. [File existing conditions are the same as a.]

[image:]Note: In case of r+, w+ and a+ mode, however, a program must not alternate immediately between reading and writing. After a write operation, you must call the fflush() function or a positioning function (fseek(), fsetpos(), or rewind()) before performing a read operation. After a read operation, you must call a positioning function before performing a write operation.
Returns: A pointer to the FILE structure[footnoteRef:2] on success. NULL[footnoteRef:3] on failure. [2: The FILE structure as defined in stdio.h is as follows:
typedef struct {
 int level; /* Fill/empty level of buffer */
 unsigned flags; /* File status flags */
 char fd; /* File descriptor */
 unsigned char hold; /* Ungetc char if no buffer */
 int bsize; /* Buffer size */
 unsigned char *buffer; /* Data transfer buffer */
 unsigned char *curp; /* Current active pointer */
 unsigned istemp; /* Temporary file indicator */
 short token; /* Used for validity checking */
} FILE;] [3: NULL is an integer constant whose value is 0.]

· int fclose(FILE *fp)
Flushes any data still pending in the buffer to the file, closes the file, and releases any memory used for the stream's input and output buffers.
fp – The FILE pointer.
Returns: 0 on success. EOF[footnoteRef:4] on failure. [4: EOF is an integer constant whose value is -1.]

Sequential read/write functions:

Character I/O:
· int fgetc(FILE *fp)
int getc(FILE *fp)
int getchar(void)
Reads a character from the input stream referenced by fp, or from keyboard in case of getchar().
fp – The FILE pointer.
[image:]Returns: int value of the character read on success. EOF on failure.

· int fputc(int c, FILE *fp)
int putc(int c, FILE *fp)
int putchar(int c)
Writes the char value of the argument c to the output stream referenced by fp, or to the monitor in case of putchar().
c – int value of the character to be written.
fp – The FILE pointer.
Returns: int value of the character written on success. EOF on failure.

String I/O:
· char *fgets(char *buf, int n, FILE *fp)
char *gets(char *buf)
fgets() reads up to n - 1 characters from the input stream referenced by fp into the buffer addressed by buf, appending a null character to terminate the string. If the function encounters a newline character or the end of the file before it has read the maximum number of characters, then only the characters read up to that point are read into the buffer. The newline character '\n' is also stored in the buffer if read.
gets() reads a line of text from standard input into the buffer addressed by buf. The newline character that ends the line is replaced by the null character that terminates the string in the buffer.
buf – Pointer to the string where the characters read are to be stored.
n – Number of characters to be read into the buffer.
fp – The FILE pointer.
Returns: The value of the argument buf on success. NULL on failure.
· int fputs(const char *s, FILE *fp)
int puts(const char *s)
fputs() writes the string s to the output stream referenced by fp. The null character that terminates the string is not written to the output stream.
puts() writes the string s to the standard output stream, followed by a newline character.
s – Pointer to the string which is to be written.
fp – The FILE pointer.
Returns: A non-negative value on success. EOF on failure.

Formatted I/O:
· int *fscanf(FILE *fp, const char *format, ...)
int *scanf(const char *format, ...)
Reads from the input stream specified by fp, or from the keyboard in case of scanf().
fp – The FILE pointer.
format – Format specifiers.
Returns: Number of data items successfully converted and stored (on success). EOF on failure.
· int *fprintf(FILE *fp, const char *format, ...)
int *printf(const char *format, ...)
Writes to the output stream specified by fp, or to the monitor in case of printf().
fp – The FILE pointer.
format – Format specifiers.
Returns: Number of characters written (on success). EOF on failure.

Block/Record I/O:
[image:]Note: In case of block/record IO, on systems that distinguish between text and binary file access modes, the file should be opened in binary mode (by appending b to the mode specified in the mode argument of fopen()).
· int fread(const void *buffer, int size, int n, FILE *fp)
Reads up to n data objects of the specified size from file referenced by the FILE pointer fp, and stores them in the memory block pointed to by the buffer argument.
buffer – Pointer to the object where the data read are to be stored.
size – Size of one object.
n – Number of objects to be read.
fp – The FILE pointer.
Returns: Number of data objects read (on success). If this number is less than n, then either the end of the file was reached or an error occurred.
· int fwrite(const void *buffer, int size, int n, FILE *fp)
Writes up to n data objects of the specified size from the buffer addressed by the pointer argument buffer to the file referenced by the FILE pointer fp.
buffer – Pointer to the object which is to be written.
size – Size of one object.
n – Number of objects to be written.
fp – The FILE pointer.
Returns: Number of data objects actually written to the file. (on success). 0 if either the object size size or the number of objects n was 0. If a write error occurs, then the return number would be less than n.

Random access file functions:
· long ftell(FILE *fp)
Returns the file position of the stream specified by fp.
fp – The FILE pointer.
Returns: The offset (in bytes) of the current character from the beginning of the file (on success). -1 on error.
· int fseek(FILE *fp, long offset, int origin)
Sets the file position indicator to a position specified by the value of offset and by a reference point indicated by the origin argument.
fp – The FILE pointer.
offset – The offset from the reference point indicated by the origin argument.
origin – One of the following modes:
	Macro name
	Value
	Offset is relative to

	SEEK_SET
	0
	The beginning of the file.

	SEEK_CUR
	1
	The current file position.

	SEEK_END
	2
	The end of the file.

Returns: 0 on success. Non-zero value on error.
· void rewind(FILE *fp)
Sets the file position indicator to the beginning of the file. This function is equivalent to
(void) fseek(fp, 0L, SEEK_SET)
fp – The FILE pointer.
Returns: Nothing.
Error detection functions:
· int ferror(FILE *fp)
Used to determine if an error has occurred.
fp – The FILE pointer.
Returns: 0 if no error has occurred. Non-zero value if there is an error.
· void perror(const char *string)
Prints a message to the standard error stream. The output includes first the string referenced by the pointer argument, if any; then a colon and a space, then the error message that corresponds to the current value of the errno variable, ending with a newline character.
string – The custom message to be printed.
Returns: Nothing.

Miscellaneous functions:
· int fflush(FILE *fp)
Empties the I/O buffer of the open file specified by the FILE pointer argument. If the file was opened for writing, fflush() writes the contents of the file. If the file is only opened for reading, the function clears the buffer.
fp – The FILE pointer.
Returns: 0 on success. EOF if an error occurs in writing to the file.

	
3.2
	Complete Concepts Program:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 FILE *in;
 FILE *out;

 // Copying a file using Character I/O
 printf("Character I/O\n");
 char ch;
 in = fopen("database.txt", "r");
 out = fopen("database_copy_char.txt", "w");
 while ((ch = fgetc(in)) != EOF) {
 printf("%c", ch);
 fputc(ch, out);
 }
 fclose(in);
 fclose(out);
 printf("\n\n");

 // Copying a file using String I/O
 printf("String I/O\n");
 char str[10];
 in = fopen("database.txt", "r");
 out = fopen("database_copy_string.txt", "w");
 while (fgets(str, sizeof(str), in) != NULL) {
 printf("%s", str);
 fputs(str, out);
 }
 fclose(in);
 fclose(out);
 printf("\n\n");

 // Copying a file using Formatted I/O
 printf("Formatted I/O\n");
 char name[5];
 int roll;
 float marks;
 in = fopen("database.txt", "r");
 out = fopen("database_copy_formatted.txt", "w");
 while (fscanf(in, "%s\t%i\t%f\n", name, &roll, &marks) != EOF) {
 printf("%s\t%i\t%f\n", name, roll, marks);
 fprintf(out, "%s\t%i\t%f\n", name, roll, marks);
 }
 fclose(in);
 fclose(out);
 printf("\n\n");

 // Copying a file using Record/Block I/O
 printf("Record/Block I/O\n");
 struct database {
 char name[5];
 int roll;
 float marks;
 };
 struct database db[10];
 int no_of_records = 0;

 in = fopen("database.rec", "rb");
 out = fopen("database_copy.rec", "wb+");
 while (fread(&db[no_of_records], sizeof(db[0]), 1, in) == 1) {
 no_of_records++;
 }
 fwrite(db, sizeof(db[0]), no_of_records, out);
 fclose(in);

 // Verify copied file
 fflush(out);
 rewind(out);
 while (fread(&db[no_of_records], sizeof(db[0]), 1, out) == 1) {
 printf("%s\t%d\t%f\n", db[no_of_records].name, db[no_of_records].roll,
 db[no_of_records].marks);
 no_of_records++;
 }
 fclose(out);
 printf("\n\n");

 // Use of random access file and error detection functions
 in = fopen("database.rec", "rb");

 // Read the 2nd record
 printf("2nd record from database:\n");
 if (fseek(in, sizeof(db[0]), SEEK_SET) == 0) {
 if (fread(&db[1], sizeof(db[1]), 1, in) == 1) {
 printf("%s\t%d\t%f\n", db[1].name, db[1].roll, db[1].marks);
 } else {
 if (ferror(in)) {
 perror("Error while reading 2nd record: \n");
 } else {
 printf("No record left to be read.\n");
 }
 }
 } else {
 perror("Error while seeking: ");
 }

	// Read the 5th record
 printf("5th record from database:\n");
 if (fseek(in, sizeof(db[0]) * 2, SEEK_CUR) == 0) {
 if (fread(&db[1], sizeof(db[1]), 1, in) == 1) {
 printf("%s\t%d\t%f\n", db[1].name, db[1].roll, db[1].marks);
 } else {
 perror("Error while reading 5th record: \n");
 }
 } else {
 perror("Error while seeking: \n");
 }

 return (EXIT_SUCCESS);
}

[image:][image:][image:]THE END

Sharafat Ibn Mollah Mosharraf
12th Batch (2005-2006),
Dept. of Computer Science & Engineering,
University of Dhaka.
E-mail: sharafat_8271@yahoo.co.uk
Home Page: www.sharafat.info
Blog: http://blog.sharafat.info
4

image6.jpeg
Data Type | Memory Range Declaration printf() scanf()
Single 1 Byte - char %c %c
Character
String - char Yos Y%s
Signed 2 Bytes 2510251 int %d %d
Integer
Unsigned 2 Bytes 2% unsigned %u (integer) %u
Integer %3x (hexadecimal)
%0 (octal)
Long 4 Bytes | -2 to 2™1 (signed) | long int %Id, %lu, %lx, %lo %Id, %lu,
Integer 2'%1 (unsigned) %lx, %lo
Floating 4 Bytes 10%t0 107 float %f (decimal notation) | %f or %e
Point 6-digit precision %e (exponential notation)
%g (%f or %e — the shorter)

Double 8 Bytes 10°% 10 10°® double %le, %If %le, %If

15-digit precision
Long 10 Bytes 10%7 10 1073 long double %Le, %Lf %Le, %Lf
Double 19-digit precision

image7.gif

image8.gif

image9.gif

image10.gif

image11.gif

image12.png
Memory

o | 200

200| 300
File loaded| Do char buffer
into buffer| A

File Buffer

image13.gif

image14.gif
9.

image3.gif

image4.gif

image5.gif

