AUTOMATA THEORY
STUDY GUIDE		

Prepared By
Sharafat Ibn Mollah Mosharraf
12th Batch (05-06)
Dept. of Computer Science & Engineering
University of Dhaka

TABLE OF CONTENTS

CHAPTER 1: THE METHODS AND THE TECHNIQUES	1
CHAPTER 2 & 3: FINITE AUTOMATA, REGULAR EXPRESSIONS AND LANGUAGES	5
CHAPTER 4: PROPERTIES OF REGULAR LANGUAGES	19
CHAPTER 5 & 6: CONTEXT-FREE GRAMMAR & PUSH-DOWN AUTOMATA	25
CHAPTER 8: INTRODUCTION TO TURING MACHINES	30

APPENDIX A: BUILDING REGULAR EXPRESSIONS (Solution to Exercises of Ullman and Martin)	33
APPENDIX B: SOLUTION TO SELECTED QUESTIONS FROM THE IN-COURSE EXAMS OF PREVIOUS YEARS	34

[bookmark: _Toc235236452]CHAPTER 1
[bookmark: _Toc235236453]THE METHODS AND THE TECHNIQUES
Concepts
	1.1
	Easier representation of union and intersection of sets
A1 A2 A3 = { x | x A1 or x A2 or x A3 }
	= { x | x is an element of at least one of the sets A1, A2 and A3 }
More generally, if A1, A2, … are sets, we can write

	1.2
	Power set of a set
For any set A, the set of all subsets of A is referred to as the power set of A, written as 2A.
The reason for this terminology and this notation is that if A has n elements, then 2A has 2n elements.
For example, suppose A = {1, 2, 3}. Then,
2A = { , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }
Notice that and A are both elements of 2A. Therefore, the empty set () is a subset of every set, and every set is a subset of itself.

	1.3
	Shortening the description of a set
To say that x is an element of the set A, we write x A.
Using this notation, we might describe a set A as following:
B = { x | x A and x 10 }
which we read “B is the set of all x such that x belongs to A and x 10”.
A common way to shorten this slightly is to write
B = { x A | x 10 }
which we read “B is the set of x in A such that x 10.”

	1.4
	Logical Quantifiers and Quantified Statements
A statement “there exists an x such that x2 < 4” is called a quantified statement.
The phrase “there exists” is called the existential quantifier; the variable x is said to be bound to the quantifier and is referred to as a bound variable.
Existential Quantifier
	x (x2 < 4)	-	“There exists an x such that x2 < 4”
	x A(x2 < 4)	-	“There exists an x in A such that x2 < 4”
Universal Quantifier
	x (x2 < 4)	-	“For every x, x2 < 4”
	x A(x2 < 4)	-	“For every x in A, x2 < 4”

	1.5
	Alphabet
An alphabet is a finite set of symbols. We denote it by . For example:
	1 = { a, b, c, d, …, z } : the set of (lowercase) letters in English
	2 = { 0, 1, …, 9 } : the set of (base 10) digits
· The letters in an alphabet are usually denoted using the letters from the beginning portion in English alphabet, for example, a, b, c, d etc.

	1.6
	String
A string over alphabet is a finite sequence of symbols in .
· Strings are usually denoted using the letters from the ending portion in English alphabet, for example, s, t, u, v, w, x, y, z etc.
· The length of a string x over is the number of symbols in the string, and we denote this number by |x|.
For example, some of the strings over the alphabet {a, b} are a, baa, aab and aabba; and we have |a| = 1, |baa| = |aab| = 3 and |aabba| = 5.
· The null string or empty string (the string of length 0) is a string over , no matter what alphabet is. We denote it by (epsilon), or λ (lowercase Greek Lambda), or Λ (uppercase Greek Lambda).
· For any alphabet , the set of all strings over is denoted by *.
For example, for = {a, b}, we have
* = {a, b}* = {, a, b, aa, ab, bb, ba, aaa, aab, aba, …}

	1.7
	Language
A language is a set of strings over an alphabet . Languages are usually denoted by L.
A few examples of languages over are:
	L1 = {, a, b, aa, ab, bb, ba}
	L2 = { ab, bab }* { b }{ bb }*
	L3 = { x {a, b}* | |x| 10}
	L4 = { x {a, b}* | |x| is odd}
· * is a language for any alphabet .
· , the empty or null language, is a language over any alphabet. A null language means that there is no string in that language.
· {}, the language consisting of only the empty string, is also a language over any alphabet. Note that ≠ {}; the former has no strings and the latter has one string.
· As the set of all strings over is *, therefore, a language over is a subset of *. That is,
L *
· The number of languages that can be constructed from the alphabet  is 2*.
· The only important constraint on what can be a language is that all alphabets are finite.

Construction of new languages from an existing language
Because languages are sets of strings, new languages can be constructed using set operations.
The operations we can use to construct new languages from existing languages are as follows:
1. Union
2. Intersection
3. Difference (which includes the complement operation)
4. Concatenation (which includes the Kleen star operation)
For any two languages L1, L2 over an alphabet , their union (L1 L2), intersection (L1 L2) and difference (L1 – L2) are also languages over .
When we speak of the complement of a language L over , we take the universal set to be the language * so that L′ = * – L.

The concatenation operation
If x and y are elements of *, the concatenation of x and y is the string xy formed by writing the symbols of x and the symbols of y consecutively.
For example, if x = abb and y = ba, then xy = abbba and yx = baabb.
· For any string x, x = x = x.
· A string x is a substring of another string y if there are strings w and z (either or both of which may be null), so that y = wxz.
· A prefix of a string is an initial substring. For example, the prefixes of aba are (which is a prefix of every string), a, ab and aba.
· A suffix is a final substring.

Concatenation of languages
If L1, L2 *, then L1L2 = { xy | x L1 and y L2 }
For example,
L1 = {hope, fear}
L2 = {ful, less}
 L1L2 = {hopeful, hopeless, fearful, fearless}
· Just as concatenating a string x with produces x, concatenating any language L with {} produces L. In other words, L{} = {}L = L.

Exponential notation in concatenation
We use exponential notation to indicate the number of items being concatenated. These can be individual symbols, strings, or languages. Thus, if  is an alphabet, a  , x  * and L *, then
ak = aa…a
xk = xx…x
k = … = {x  * | |x| = k}
Lk = LL…L = 	[Li is the language L concatenated with itself i times]
where in each case there are k factors altogether.
An important special case is the one in which k = 0:
a0 =
x0 =
0 = {}
L0 = {}
Therefore, the unit of concatenation for strings is , and for languages is {}.
· The set of all strings that can be obtained by concatenating any number of elements of L:

· The set of all strings that can be obtained by concatenating one or more elements of L:

· L+ = L*L = LL*; L* = L+ and L+ L*.
· The operation * is also called the star, closure, Kleene star or Kleene closure operator.

[bookmark: _Toc235236454]CHAPTER 2 & 3
[bookmark: _Toc235236455]FINITE AUTOMATA, REGULAR EXPRESSIONS AND LANGUAGES
Concepts
	3.1
	Regular Language and Regular Expression
Simple Language
A language that contains a single string of length one or does not contain any string at all is called a simple language.
For example, let,  = {1, 2, 3}.
 Simple languages over  are , {}, {1}, {2} and {3}.
· , {} are common to all simple languages.

Regular Language
Languages which are constructed from simple languages by applying the operations union, concatenation and Kleene star are called regular languages.

Regular Expression
A regular expression is an algebraic formula whose value is a pattern consisting of a set of strings, called the language of the expression.
For example, let L = {w | w ends with 11} be a language over the alphabet {0, 1}.
Then the regular expression for L is: (0 + 1)*11

Recursive Definition[footnoteRef:2] of Regular Languages and Regular Expressions over  [2: In a recursive definition, there are three steps:
Certain objects are defined to be in the set.
Rules are listed for producing new objects in the set from other objects already in the set.
There are no other elements in the set.
Mathematical induction is a special case of a recursive definition.]

The set R of regular languages over  and the corresponding regular expressions are defined as follows:
1. is an element of R, and the corresponding regular expression is .
2. {} is an element of R, and the corresponding regular expression is .
3. For each a  , {a} is an element of R, and the corresponding regular expression is a.
4. If L1 and L2 are any elements of R, and r1 and r2 are the corresponding regular expressions, then
(a) L1 L2 is an element of R, and the corresponding regular expression is (r1 + r2);
(b) L1L2 is an element of R, and the corresponding regular expression is (r1r2);
(c) L1* is an element of R, and the corresponding regular expression is (r1*).
5. Only those languages that can be obtained by using statements 1 to 4 are regular languages over .

	3.2
	Finite Automata (FA) / Deterministic Finite Automata (DFA) / Finite State Machine (FSM)
An FA is a 5-tuple (Q, , q0, F, δ), where
Q is a non-empty finite set (whose elements are thought of as states);
 is a non-empty finite alphabet of input symbols;
q0  Q (the initial state);
F Q (the set of final / accepting states);
δ is a function from Q  to Q (i.e., δ : Q  → Q, the transition function)
For any element q  Q and any symbol a  , we interpret δ(q, a) as the state to which the FA moves if it is in state q and receives the input a.
A DFA is usually denoted by M.

Example of DFA
[image:]
The Extended Transition Function for a DFA
Let M = (Q, , q0, F, δ) be an FA. We define the function
 : Q  → Q
as follows:
1. For any q  Q, (q,) = q
2. For any q  Q, y  *, and a  , (q, ya) = δ((q, y), a)
Example:
[image:]

Acceptance of a string or language by a DFA
Let M = (Q, , q0, F, δ) be a DFA.
A string x  * is accepted by M if (q0, x)  F.
The language accepted / recognized by M, is the set
L(M) = { x  * | (q0, x)  F }
· If L = L(M) for some DFA, then L is a regular language.

	3.3
	Nondeterministic Finite Automata (NFA)
An NFA is a 5-tuple (Q, , q0, F, δ), where
Q is a non-empty finite set (whose elements are thought of as states);
 is a non-empty finite alphabet of input symbols;
q0  Q (the initial state);
F Q (the set of final / accepting states);
δ is a function from Q  to 2Q (i.e., δ : Q  → 2Q, the transition function)
For any element q  Q and any symbol a  , we interpret δ(q, a) as the set of states to which the NFA moves if it is in state q and receives the input a.
An NFA is usually denoted by N.

Example of NFA
Consider the language L = {w | w ends with 01}.
The NFA would be defined as N = ({q0, q1, q2}, {0, 1}, q0, {q2}, δ), where δ is defined using the following rules:
δ(q0, 0) = {q0, q1},
δ(q0, 1) = {q0},
δ(q1, 1) = {q2}
[image:]			[image:]

The Extended Transition Function for an NFA
Let N = (Q, , q0, F, δ) be an NFA. We define the function
 : Q  → 2Q
as follows:
1. For any q  Q, (q,) = {q}

Acceptance of a string or language by an NFA
Let N = (Q, , q0, F, δ) be an NFA.
A string x  * is accepted by N if (q0, x) F ≠ (i.e., (q0, x) contains at least one accepting state).
The language accepted / recognized by N, is the set
L(N) = { x  * | (q0, x) F ≠ }

	3.4
	-NFA (-Transition of an NFA)
An NFA with -transitions (abbreviated -NFA) is a 5-tuple (Q, , q0, F, δ), where
Q is a non-empty finite set (whose elements are thought of as states);
 is a non-empty finite alphabet of input symbols;
q0  Q (the initial state);
F Q (the set of final / accepting states);
δ is a function from Q ( {}) to 2Q (i.e., δ : Q ( {}) → 2Q, the transition function)

Example of -NFA
[image:]

-Closure of a Set of States
[Informal definition: If is the set of states from where we can go to other states using -transitions, then the -closure of is the set of all states that can be reached from elements of by using zero, one or more -transitions.]
Let N = (Q, , q0, F, δ) be an -NFA, and let S be any subset of Q. The -closure of S is the set (S) defined as follows:
1. Every element of S is an element of (S);
2. For any q  (S), every element of δ(q,) is in (S);
3. No other elements of Q are in (S).

The Extended Transition Function for an -NFA
Let N = (Q, , q0, F, δ) be an -NFA. We define the function
 : Q  → 2Q
as follows:
1. For any q  Q, (q,) = ({q})

Acceptance of a string or language by an -NFA
Let N = (Q, , q0, F, δ) be an -NFA.
A string x  * is accepted by N if (q0, x) F ≠ (i.e., (q0, x) contains at least one accepting state).
The language accepted / recognized by N, is the set
L(N) = { x  * | (q0, x) F ≠ }

	3.5
	Kleene’s Theorem
Part 1: Any regular language can be accepted by a finite automaton.
Part 2: The language accepted by any finite automaton is regular.
Theorem 4.3 (of Martin) [It’s just Kleene’s theorem expressed in another way]
For any alphabet , and any language L *, these three statements are equivalent if L is regular:
1. L is recognized by an FA / DFA.
2. L is recognized by an NFA.
3. L is recognized by an -NFA.

	3.6
	Algebraic Laws for Regular Expressions
	x + y = y + x
	Commutative Law

	(x + y) + z = x + (y + z)
	Associative Law for Union

	(xy)z = x(yz)
	Associative Law for Concatenation

	 + x = x + = x
	Identity Law for Union

	x = x = x
	Identity Law for Concatenation

	x = x =
	Annihilator Law for Concatenation

	x(y + z) = xy + xz
	Left Distributive Law of Concatenation Over Union

	(x + y) z = xz + yz
	Right Distributive Law of Concatenation Over Union

	x + x = x
	Idempotence Law for Union

	(x*)* = x*x* = x*
	Laws Involving Closures

	(x + y)* = (x*y*)* = (x* + y*)*
	

	(xy)*x = x(yx)*
	

	* = []
	

	* =
	

	x+ = xx* = x*x [[footnoteRef:4]] [4: x+ = x + xx + xxx + …
x* = + x + xx + xxx + …
 xx* = x + xx + xxx + …
	= x + xx + xxx + …
	= x+]

	

	x* = x+ + = xx* + = x*x + [[footnoteRef:5]] [5: x* = + x + xx + xxx + …
	 = + x+
	 = x+ +]

	

	x? = + x = x +
	This is actually the definition for the ‘?’ operator.

	x + yz ≠ (x + y)z
	Common mistakes made

	xx ≠ x
	

	3.7
	Building Regular Expressions
Let,  = {a, b, c}
Zero or more – a*
a* means “zero or more a’s.” To say “zero or more ab’s,” that is, {, ab, abab, ababab, …}, you need to say (ab)*. Don't say ab*, because that denotes the language {a, ab, abb, abbb, ...}.
One or more – a+ = aa* = a*a
Zero or one – a? = a + = + a
Any string at all – (a + b + c)*
Any non-empty string – (a + b + c)(a + b + c)*
This can be written as any character from  followed by any string at all: (a + b + c)(a + b + c)*.
Strings not containing ‘a’ – (b + c)*
Strings containing exactly one ‘a’ – (b + c)*a(b + c)*
To describe any string that contains exactly one a, put “any string not containing an a,” on either side of the a.
Strings containing no more than three a’s - (b + c)*a?(b + c)*a?(b + c)*a?(b + c)*
We can describe the string containing zero, one, two, or three a’s (and nothing else) as
a?a?a?
Now we want to allow arbitrary strings not containing a’s at the places marked by X’s:
Xa?Xa?Xa?X
So we put in (b + c)* for each X:
(b + c)*a?(b + c)*a?(b + c)*a?(b + c)*
This is equivalent to: (b + c)*(a +)(b + c)*(a +)(b + c)*(a +)(b + c)*.
Strings containing at least one occurrence of each symbol in 
The problem here is that we cannot assume the symbols are in any particular order. We have no way of expressing “in any order”, so we have to list the possible orders:
abc + acb + bac + bca + cab + cba
To make it easier to see what’s happening, let’s put an X in every place we want to allow an arbitrary string:
XaXbXcX + XaXcXbX + XbXaXcX + XbXcXaX + XcXaXbX + XcXbXaX
Finally, replacing the X’s with (a + b + c)* gives the final answer:
(a + b + c)*a(a + b + c)*b(a + b + c)*c + (a + b + c)*a(a + b + c)*c(a + b + c)*b +
(a + b + c)*b(a + b + c)*a(a + b + c)*c + (a + b + c)*b(a + b + c)*c(a + b + c)*a +
(a + b + c)*c(a + b + c)*a(a + b + c)*b + (a + b + c)*c(a + b + c)*b(a + b + c)*a𞎺
Strings containing no runs of a’s of length greater than two
We can fairly easily build an expression containing no a, one a, or one aa:
(b + c)*(+ a + aa)(b + c)*
But if we want to repeat this, we need to be sure to have at least one non-a between repetitions:
(b + c)*(+ a + aa)(b + c)*((b + c)(b + c)*(+ a + aa)(b + c)*)*
Strings in which all runs of a’s have lengths that are multiples of three – (aaa + b + c)*

	3.8
	Precedence of Regular Expression Operators
* + ?	(Unary operators)		Highest
.	(Concatenation operator)
+	(Union operator)		Lowest

	3.9
	Conversion Among RE, DFA, NFA and -NFA
 (
-NFA
RE
NFA
D
FA
)

	3.10
	Converting DFA / NFA / -NFA into RE by Eliminating States
The process for constructing the regular expression is to first have only one initial and one terminal state. We then eliminate one state at a time from the state diagram and resulting transition graphs and in each case get a transition graph with e-arrows between states, where e is a regular expression. Eventually we get a transition graph of the form:
[image:]
which accepts the expression e1 + e2 + … + en.
If there are more than one terminal states, say there are terminal states t1, t2, t3, …, tn, then replace the states
 (
with
)	[image:]				[image:]
To eliminate the state si, we use the following rules:
	Original Diagram
	Equivalent RE

	 (
s
i
e
1
,
e
2
, …,
e
n
)
	 (
s
i
(
e
1
+e
2
+…+e
n
)
*
)

	 (
s
i
e
2
s
i
+1
s
i
-
1
e
1
e
3
)
	 (
s
i
+1
s
i
-
1
e
1
e
2
*
e
3
)

	 (
s
i
+1
s
i
-
1
e
2
e
1
…
e
n
)
	 (
s
i
+1
s
i
-
1
e
1
+
e
2
+
…
+
e
n
)

	 (
s
i
+1
s
i
-
1
s
i
e
1
e
2
e
3
)
	 (
s
i
+1
s
i
-
1
e
1
(
e
2
e
1
)
*
e
3
)

	[image:]
	[image:]

Example 1
[image:]
[image:]
Example 2
[image:]
[image:]
Example 3
[image:]
[image:]

	3.11
	Converting RE into -NFA
	Original RE
	Equivalent Diagram

	
	[image:]

	
	[image:]

	a
	[image:]

	RS
	[image:]

	R + S
	[image:]

	R*
	[image:]

Example
Let’s convert the RE (0 + 1)*1(0 + 1) to an -NFA.
[image:]

	3.12
	Converting -NFA into NFA by Eliminating -Transitions
Suppose we want to replace an -move from vertex v1 to vertex v2. Then we proceed as follows:
1. Find all the edges starting from v2.
2. Duplicate all these edges starting from v1, without changing the edge labels.
3. If v1 is an initial state, make v2 also an initial state.
4. If v2 is a final state, make v1 as the final state.
			
Example:
Consider the -NFA below:
 (
q
1
q
2
q
0
1
2
0
)
We go through the following steps to remove the -moves:
 (
q
1
q
2
q
0
1
1
2
0
q
1
q
2
q
0
1
1
2
0
2
q
1
q
2
q
0
1
2
1
2
0
2
(a)
(
b
)
(
c
)
)

	3.13
	Converting -NFA into DFA
Let, E = (Q, , q0, F, δ) be an -NFA.
The corresponding DFA is M = (Q', , q0', F', δ') such that
1. Q' is defined as: (q)  Q' where q  Q.
2. q0' is (q0).
3. F' = {(qa)  F' | (qa) F ≠ }.
4. δ' is defined as:
For each element of (q), find δ(q, a). The destination DFA state is the state which contains only the resultant -NFA states.
Example
[image:]
[image:]

	3.14
	Converting NFA into DFA by Subset Construction
Let, N = (Q, , s0, F, δ) be an NFA.
The corresponding DFA M = (Q', , {s0}, F', δ') can be constructed using the following algorithm:
1. Begin with the state {s0} where s0 is the start state of the nondeterministic automaton.
2. For each ai  , construct an ai-arrow from {s0} to the set consisting of all states such that there is an ai-arrow from s0 to that state.
3. For each newly constructed set of states sj and for each ai  , construct an ai-arrow from sj to the set consisting of all states such that there is an ai-arrow from an element of sj to that state.
4. Continue this process until no new states are created.
5. Make each set of states sj that contains an element of the acceptance set of the nondeterministic automaton, into an acceptance state.
Example 1
[image:]
[image:]
Example 2
[image:]

	3.15
	Applications of Regular Expressions
1. Finding Patterns in Text. The regular expression notation is valuable for describing searches for interesting patterns. For example, the regular expression for a valid e-mail address is as follows:
^[_a-z0-9-]+(.[_a-z0-9-]+)*@[a-z0-9-]+(.[a-z0-9-]+)*(.[a-z]{2,8})
2. Lexical Analysis. One of the oldest applications of regular expressions was in specifying the component of a compiler called a lexical analyzer. This component scans the source program and recognizes all tokens, those substrings of consecutive characters that belong together logically. Keywords and identifiers are common examples of tokens, but there are many others.

[bookmark: _Toc235236456]CHAPTER 4
[bookmark: _Toc235236457]PROPERTIES OF REGULAR LANGUAGES
Concepts
	4.1
	Concatenation of Two DFAs
Let, M1, M2 be two DFAs. To make M1M2, the following rules are followed:
1. Place M2 after M1.
2. For each of the states in M1 which has an arrow – e.g., labeled a – towards the accepting states, place another arrow from that state towards the initial state of M2 with the same label (in this case, a).
3. Make all the accepting states in M1 non-accepting.
Example 1
[image:]
[image:]
Example 2
[image:]
[image:]

	4.2
	Union of Two DFAs
Let, M1, M2 be two DFAs. To make M1 M2, the following rules are followed:
1. Create a new initial state.
2. Detect which arrows are out from each of the initial states of M1 and M2. Add similar arrows from the new initial state towards those states where those arrows were gone.
Example 1
[image:]
[image:]
Example 2
[image:]
[image:]

	4.3
	Complement / Transpose of a DFA
Let, M be a DFA. To make , just make the non-final states final and the final states non-final.
Example
 (
q
0
q
1
0
Figure:
 an FA
M
.
q
2
1
0
1
0, 1
q
0
q
1
0
Figure:
 an FA

q
2
1
0
1
0, 1
)

	4.4
	Intersection of Two Regular Languages
Let, M1, M2 be two DFAs. Then, M1 ∩ M2 = .
Difference of Two Regular Languages
Let, M1, M2 be two DFAs. Then, M1 - M2 = M1 ∩ is the set of strings that are in language M1 but not in language M2.

	4.5
	Equivalence of States
Two states q1 and q2 are equivalent (denoted by q1 ≡ q2) if both δ(q1, x) and δ(q2, x) are final states, or both of them are non-final states for all x ϵ Σ*.
Minimization of DFA
To minimize a DFA, the following rules are followed:
1. For each set of pair of states {p, q}, determine whether one of these states is final and the other is not. If so, p and q can never be collapsed without altering the language accepted. Mark this pair for “non-collapse”!
2. For each remaining unmarked pair {p, q} and each symbol b in the alphabet, note {δ(p, b), δ(q, b)}. If δ(p, b) and δ(q, b) are distinct and the pair they form was marked in the previous round, then p and q can never be collapsed without altering the language recognized. Mark such pair for “non-collapse”!
3. Repeat step 2 until, when the step is completed, no new pairs has been marked.
Note that for each pair {p, q} remaining unmarked at this stage: for any string s of symbols of the alphabet, δ(p, b) and δ(q, b) (starting in states p and q, the string s is read) must be either both final states or both non-final states.
4. Collapse the states in each group into a single state. A group is final if it contains a final state of the original DFA.

Example
[image:]
[image:]
π0 = {{q2}, {q0, q1, q3, q4, q5, q6, q7}}
π1 = {{q2}, {q0, q4, q6}, {q1, q7}, {q3, q5}}
π2 = {{q2}, {q0, q4}, {q6}, {q1, q7}, {q3, q5}}
 The minimum state automaton is
M' = (Q', {0, 1}, δ', q0', F')
where Q' = {[q2], [q0, q4], [q6], [q1, q7], [q3, q5]},
	q0' = [q0, q4],
	F' = [q2]
and δ' is given by the following table:
[image:]	[image:]

	4.4
	The Pumping Lemma for Regular Languages
Let L be a regular language. Then there exists a constant n (which depends on L) such that for every string w in L such that |w| ≥ n, we can break w into three strings, w = xyz, such that:
1. y ≠ ϵ
2. |xy| ≤ n
3. For all k ≥ 0, the string xykz is also in L.

Prove that the language L consisting of all strings with an equal number of 0’s and 1’s (not in any particular order) is not a regular language.
Let, L is regular and n be the number of states in the FA accepting L.
Let, w = 0n1n. Then, |w| = 2n > n.
By pumping lemma, we can write w = xyz such that |xy| ≤ n and y ≠ ϵ.
Since |xy| ≤ n and xy comes at the front of w, therefore, x and y consist of only 0’s.
Consider the string xy0x, i.e., xz.
Now, xz has n 1’s, since all the 1’s of w are in z.
However, xz has fewer than n 0’s, because we lost the 0’s of y and y ≠ ϵ.
 xz ∉ L.
This is a contradiction.
 L is not regular.

Show that L = {0n | n is a perfect square} is not regular.
Let, L is regular and n be the number of states in the FA accepting L.
Let, w = . Then, |w| = n2 > n.
By pumping lemma, we can write w = xyz such that |xy| ≤ n and y ≠ ϵ.
Since |xy| ≤ n, then y consists of between 1 and n 0’s.
Consider the string xy2z, i.e., xyyz.
xyyz has length between n2 + 1 (when y consists of 1 0) and n2 + n (when y consists of n 0’s).
Since the next perfect square after n2 is (n + 1)2 = n2 + 2n + 1, we know that the length of xyyz lies strictly between the consecutive perfect squares n2 and (n + 1)2. Thus, the length of xyyz cannot be a perfect square. But if the language were regular, then xyyz would be in the language, which contradicts the assumption that the language of strings of 0’s whose length is a perfect square is a regular language.
 L is not regular.

Prove that L = {wwR | w ϵ {0, 1}*} is not regular.
Let, L is regular and n be the number of states in the FA accepting L.
Let, w = 0n1n1n0n. Then, |w| = 4n > n.
By pumping lemma, we can write w = xyz such that |xy| ≤ n and y ≠ ϵ.
Since |xy| ≤ n and xy comes at the front of w, therefore, x and y consist of only 0’s.
Consider the string xy0x, i.e., xz.
Now, xz has fewer than n 0’s on the left, because we lost the 0’s of y and y ≠ ϵ.
 xz has fewer 0’s on the left than on the right and so cannot be of the form wwR.
 xz ∉ L.
This is a contradiction.
 L is not regular.

Prove that L = {w ϵ {1}* | |w| is a prime} is not regular.
Let, L is regular and n be the number of states in the FA accepting L.
Consider some prime p ≥ n + 2; there must be such a p, since there are infinite primes.
Let, w = 1p. Then, |w| > n.
By pumping lemma, we can write w = xyz such that |xy| ≤ n and y ≠ ϵ.
Let, |y| = m. Then, |xz| = p – m.
Now consider the string xyp – mz, which must be in L by the pumping lemma, if L really is regular.
However, |xyp – mz| = |xz| + (p – m)|y| = p – m + (p – m)m = (m + 1)(p – m)
It looks like |xyp – mz| is not a prime, since it has two factors m + 1 and p – m. However, we must check that neither of these factors are 1, since then (m + 1)(p – m) might be a prime after all.
But m + 1 > 1, since y ≠ ϵ tells us that m ≥ 1.
Also, p – m > 1, since p ≥ n + 2 was chosen, and m ≤ n since m = |y| ≤ |xy| ≤ n.
 p – m ≥ 2.
Therefore, we have derived a contradiction by showing that some string not in the language was required by the pumping lemma to be in the language.
Thus, we conclude that L is not a regular language.

[bookmark: _Toc235236458]CHAPTER 5 & 6
[bookmark: _Toc235236459]CONTEXT-FREE GRAMMAR & PUSH-DOWN AUTOMATA
Concepts
	5.1
	Grammar / Context-Free Grammar (CFG)
A CFG is a 4-tuple (T, V, S, P), where
T is a finite alphabet of symbols, called terminals or terminal symbols, that form the strings 	of the language being defined;
V is a finite set of variables, also called nonterminals or nonterminal symbols or syntactic 	categories, where each variable represents a language, i.e., a set of strings;
S  V (the start symbol, which represents the language being defined);
P is a finite set of productions or grammar rules of the form A → α, where A V and
	α  (V ∪ T); A is called the head of the production, and the string α is called the body of the 	production.
A CFG is usually denoted by G.
Example
Let’s define a CFG that represents expressions in a typical programming language. First, we hall limit ourselves to the operators + and *, representing addition and multiplication. We shall allow only the letters a and b and the digits 0 and 1 as identifiers. Every identifier must begin with a or b, which may be followed by any string in {a, b, 0, 1}*.
Then, the CFG is G = (T, V, S, P), where
T = {+, *, (,), a, b, 0, 1}
V = {E, I}
S = E
P = {E → I | E + E | E * E | (E),
	I → a | b | Ia | Ib | I0 | I1}

Context-Free Language (CFL) / The Language Generated by a CFG
Let G = (T, V, S, P) be a CFG. The language generated by G is
L(G) = {x  T* | S x}
A language L is a CFL if there is a CFG G so that L = L(G).

Justification for the Name Context-Free Grammar
Considering the expression grammar above, it is easy to check that there is a derivation
E I Ib ab
As a result, for any strings α and β, it is also true that
αEβ αIβ αIbβ αabβ
The justification is that we can make the same replacements of production bodies for heads in the context of α and β as we can in isolation. In fact, it is this property of being able to make a string-for-variable substitution regardless of context that gave rise originally to the term “context-free”. There is a more powerful classes of grammars, called “context-sensitive”, where replacements are permitted only if certain strings appear to the left and/or right. Context-sensitive grammars do not play a major role in practice today.

	5.2
	Conventional Notations for CFG Derivations
1. Lower-case letters near the beginning of the alphabet, a, b and so on, are terminal symbols. We shall also assume that digits and other characters such as + or parentheses are terminals.
2. Upper-case letters near the beginning of the alphabet, A, B and so on, are variables.]
3. Lower-case letters near the end of the alphabet, w, x and so on, are strings of terminals.
4. Upper-case letters near the end of the alphabet, X, Y and so on, are either terminals or variables.
5. Lower-case Greek letters, such as α and β, are strings consisting of terminals and/or variables.

	5.3
	Leftmost and Rightmost Derivations
In order to restrict the number of choices we have in deriving a string, it is often useful to require that at each step we replace the leftmost variable by one of its production bodies. Such a derivation is called a leftmost derivation, and is indicated using the relations and , for one or many steps respectively.
Similarly, it is possible to require that at each step the rightmost variable is replaced by one of its bodies. If so, we call the derivation rightmost and use the symbols and , for one or many rightmost derivation steps respectively.

Example of Leftmost and Rightmost Derivations
Given the grammar G = (T, V, S, P), where
T = {+, *, (,), a, b, 0, 1}
V = {E, I}
S = E
P = {E → I | E + E | E * E | (E),
	I → a | b | Ia | Ib | I0 | I1}
Find the leftmost and rightmost derivations of the string a * (a + b00).

E E * E	E E * E
 I * E	 E * (E)
 a * E	 E * (E + E)
 a * (E)	 E * (E + I)
 a * (E + E)	 E * (E + I0)
 a * (I + E)	 E * (E + I00)
 a * (a + E)	 E * (E + b00)
 a * (a + I)	 E * (I + b00)
 a * (a + I0)	 E * (a + b00)
 a * (a + I00)	 I * (a + b00)
 a * (a + b00)	 a * (a + b00)

	5.4
	Parse Trees
There is a tree representation for derivations that has proved extremely useful. This tree shows us clearly how the symbols of a terminal string are grouped into substrings, each of which belongs to the language of one of the variables of the grammar. But perhaps more importantly, the tree, known as a parse tree when used in compiler, is the data structure of choice to represent the source program. In a compiler, the tree structure of the source program facilitates the translation of the source program into executable code by allowing natural, recursive functions to perform this translation process.

Yield of a Parse Tree
If we look at the leaves of any parse tree and concatenate them from left, we get a string, called the yield of the tree, which is always a string that is derived from the root variable.
Example
The figure above shows the parse tree for the string a * (a + b00) which belongs to the CFG described in the example of 5.3.

	5.5
	Applications of CFG
1. Grammars are used to describe programming languages. More importantly, there is a mechanical way of turning the language description as a CFG into a parser, the component of the compiler that discovers the structure of the source program and represents that structure by a parse tree.
2. The development of XML (Extensible Markup Language) is widely predicted to facilitate electronic commerce by allowing participants to share conventions regarding the format of orders, product descriptions, and many other kinds of documents. An essential part of XML is the Document Type Definition (DTD), which is essentially a CFG that describes the allowable tags and the ways in which these tags may be nested.

	5.6
	Ambiguous CFG
A CFG G is ambiguous if there is at least one string in L(G) having two or more distinct derivation (parse) trees (or, equivalently, two or more distinct leftmost or rightmost derivations).
[image:]
Figure: Trees with yield a + a * a, demonstrating the ambiguity of our expression grammar.
The Causes of Ambiguity in the Grammar Above
1. The precedence of operators is not respected.
2. A sequence of identical operators can group either from the left or from the right. For example, E + E + E can be grouped by either (E + E) + E or E + (E + E).

Removing the Ambiguity in the Grammar Above
The solution to the problem of enforcing precedence is to introduce several different variables, each of which represents those expressions that share a level of “binding strength”. Specifically:
1. A factor is an expression that cannot be broken apart by any adjacent operator, either a * or a +. The only factors in our expression language are:
a. Identifiers.
b. Any parenthesized expression, no matter what appears inside the parentheses.
2. A term is an expression that cannot be broken by the + operator. In our example where + and * are the only operators, a term is a product of one or more factors. For instance, the term a * b cannot be broken apart by placing an additive term, such as a + to its left or + a to its right.
3. [image:]An expression will henceforth refer to any possible expression, including those that can be broken by either an adjacent * or an adjacent +. Thus, an expression for our example is a sum of one or more terms.
The following figures show an unambiguous grammar that generates the same language as the grammar above, and the sole parse tree for the expression a + a * a.
[image:]

	6.1
	Push-Down Automata (PDA)
A PDA is a 7-tuple (Q, Σ, Γ, q0, Z0, F, δ), where
Q is a non-empty finite set of as states;
Σ and Γ are non-empty finite sets (the input and stack alphabets, respectively);
q0  Q (the initial state);
Z0  Γ (the initial stack symbol);
F Q (the set of final / accepting states);
δ : Q (Σ ∪ {}) Γ → the set of finite subsets of Q Γ*
A PDA is usually denoted by P.
Note that the PDA is essentially an -NFA with the addition of a stack.

The Transition Function of a PDA
δ takes as argument a triple δ(q, a, X), where:
1. q  Q (q is the state),
2. a  Σ ∪  (a is either an input symbol in Σ or a = ),
3. X Γ (X is a stack symbol)
The output of δ is a finite set of pairs (p, γ), where p is the new state, and γ is the string of stack symbols that replaces X at the top of the stack. For example, if γ = , then the stack is popped, if γ = X, then the stack is unchanged, and if γ = YZ, then X is replaced by Z, and Y is pushed onto the stack.

Example
Let’s design a PDA that accepts the language = {wwR | w is in (0 + 1)*}
The PDA for can be described as
P = ({q0, q1, q2}, {0, 1}, {0, 1, Z0}, δ, q0, Z0, {q2})
Where δ is defined by the following rules:
δ(q0, 0, Z0) = {(q0, 0Z0)}
δ(q0, 1, Z0) = {(q0, 1Z0)}
…
δ(q1, ϵ, Z0) = {(q2, Z0)}
[image:]

	6.2
	Language of a PDA
Acceptance by Final State
Let P = (Q, Σ, Γ, q0, Z0, F, δ) be a PDA. Then L(P), the language accepted by P by final state, is
{w | (q0, w, Z0) ├ (q, ϵ, α)}
for some state q in F and any stack string α. That is, starting in the initial ID with w waiting on the input, P consumes w from the input and enters an accepting state. The content of the stack at that time is irrelevant.
Acceptance by Empty Stack
For each PDA P = (Q, Σ, Γ, q0, Z0, F, δ), we also define
N(P) = {w | (q0, w, Z0) ├* (q, ϵ, ϵ)}
for any state q. That is, N(P) is the set of inputs w that P can consume and at the same time empty its stack.
Note: The N in N(P) stands for null stack, a synonym for empty stack.

[bookmark: _Toc235236460]CHAPTER 8
[bookmark: _Toc235236461]INTRODUCTION TO TURING MACHINES
Concepts
	8.1
	Turing Machine (TM)
[image:]
The Language of a Turing Machine
Let M = (Q, Σ, Γ, q0, B, F, δ) be a TM. Then L(M), the language accepted by M, is
{w ϵ Σ* | q0w ├* αpβ}
[image:]for some state p in F and any tape strings α and β.
The set of languages accepted by a TM is often called the recursively enumerable (RE) languages.
Example
Design a TM that accepts the language {0n1n | n ≥ 1}.
The TM is
M = ({q0, q1, q2, q3, q4}, {0, 1}, {0, 1, X, Y, B}, δ, q0, B, {q4}),
where δ is given by the following table:
[image:]

	8.2
	Problem
Design a Turing Machine taking advantage of the programming techniques discussed in section 8.3 that accepts the language anbncn (n ≥ 1).

General Design of the Turing Machine
 (
q
0
q
1
q
2
q
3
q
4
q
5
a
 /
X
 →
b
 /
Y
 →
c
 /
Z

←
Y
 /
Y
 →
a
 /
a
 →
b
 /
b
 →
Z
 /
Z

←
a
 /
a

←
Y
 /
Y

←
b
 /
b

←
Z
 /
Z
 →
X
 /
X
 →
Y
 /
Y
 →
Y
 /
Y
 →
Z
 /
Z
 →
B
 /
B
 →
)

Design of the Turing Machine using storage in the state and multiple tracks techniques:
Let the Turing Machine be defined as M = (Q, Σ, Γ, δ, [q0, B], [B, B], {[q5, B]})
where	Q	= Set of States	= {q0, q1, … q5} × {a, b, c, B}
	Σ	= Set of Input Symbols	= {a, b, c}
	Γ	= Set of Tape Symbols	= {B, *} × {a, b, c, B}
	δ	= Transition Function
	[q0, B]	= Initial State
	[B, B]	= Blank Symbol
	{[q5, B]}	= Set of Final States
Transition Diagram of M:
 (
[
q
0
,
B
]
[
B
,
 a
]
 /
[*,
a
]
 →
[
q
1
,
a
]
[
B
,
 a
]
 /
[
B
,
a
]
 →
[
q
2
,
b
]
[
B
,
 b
]
 /
[
*
,
b
]
 →
[
B
,
 b
]
 /
[B,
b
]
 →
[
q
3
,
c
]
[
B
,
 c
]
 /
[
*
,
c
]

←
[
B
,
 b
]
 /
[
B
,
b
]

←
[
*
,
 b
]
 /
[
*
,
b
]

←
[
B
,
 a
]
 /
[
B
,
a
]

←
[
*
,
 a
]
 /
[
*
,
a
]

→
[
*
,
 b
]
 /
[
*
,
b
]
 →
[
*
,
 c
]
 /
[
*
,
c
]
 →
[
*
,
 c
]
 /
[
*
,
c
]

←
[
q
4
,
b
]
[
*
,
 b
]
 /
[
*
,
b
]
 →
[
*
,
 b
]
 /
[
*
,
b
]
 →
[
*
,
 c
]
 /
[
*
,
c
]
 →
[
q
5
,
B
]
[
B
,
 B
]
 /
[
B
,
B
]
 →
)
Transition Table of M:

	States
	Input Symbols

	
	[B, a]
	[B, b]
	[B, c]
	[*, a]
	[*, b]
	[*, c]
	[B, B]

	→[q0, B]
	([q1,a],[*,a],R)
	—
	—
	—
	([q4,B],[*,b],R)
	—
	—

	 [q1, a]
	([q1,a],[B,a],R)
	([q2,b],[*,b],R)
	—
	—
	([q1,a],[*,b],R)
	—
	—

	 [q2, b]
	—
	([q2,b],[B,b],R)
	([q3,c],[*,c],L)
	—
	—
	([q2,b],[*,c],R)
	—

	 [q3, c]
	([q3,c],[B,a],L)
	([q3,c],[B,b],L)
	—
	([q0,B],[*,a],L)
	([q3,c],[*,b],L)
	([q3,c],[*,c],L)
	—

	 [q4, b]
	—
	—
	—
	—
	([q4,B],[*,b],R)
	([q4,B],[*,c],R)
	([q5,B],[B,B],R)

	 [q5, B]
	—
	—
	—
	—
	—
	—
	—

Design of the Turing Machine using subroutine:
 (
q
1
q
2
q
3
b
 /
Y
 →
c
 /
Z

←
Y
 /
Y
 →
a
 /
a
 →
b
 /
b
 →
Z
 /
Z
 →
S
tart
Figure
 1
:
 The
subroutine
Check
.
)		 (
q
0
q
1
q
3
q
4
q
5
a
 /
X
 →
Check
Y
 /
Y
 →
Y
 /
Y
 →
Z
 /
Z
 →
B
 /
B
 →
X

/
X

→
Z
 /
Z

←
a
 /
a

←
Y
 /
Y

←
b
 /
b

←
Figure
 2
:
 The complete program that accepts strings of the language
a
n
b
n
c
n
 (
n
 ≥
 1)
using the subroutine
Check
.
)

[bookmark: _Toc235236462]APPENDIX A
[bookmark: _Toc235236463]BUILDING REGULAR EXPRESSIONS
[bookmark: _Toc235236464](Solution to Exercises of Ullman and Martin)
Solved by Md. Abdul Kader
Martin: The language of all strings containing exactly two 0’s.
Answer: 1*01*01*
Martin: The language of all strings containing at least two 0’s.
Answer: (1+0)* 01*0 (1+0)*
Martin: The language of all strings that do not end with 01.
Answer: (1+0)*(00+10+11)+(1+0+e)
Martin: The language of all strings that begin or end with 00 or 11.
Answer: (00+11)(1+0)*+(0+1)*(00+11)
Martin: The language of all strings not containing the substrings 00.
Answer: (01+1)*(0+e)
Martin: The language of all strings in which the number of 0’s is even.
Answer: (1*01*01*)*
Martin: The language of all strings containing no more than one occurrence of the string 00.
Answer: (01+1)*(00+0+e)(10+1)* //special case 0
Martin: The language of all strings in which every 0 is followed immediately by 11.
Answer: 1*(011)*1*
Martin: The language of all strings containing both 11 and 010 as substrings.
Answer: (1+0)*11(1+0)* 010(1+0)* + (1+0)*010(1+0)* 11(1+0)*
Ullman: The set of strings of 0’s and 1’s whose tenth symbol from the right end is 1.
Answer: (1+0)*1(1+0)
Ullman: The language of all strings with at most one pair of consecutive 1’s.
Answer: (10+0)* (11+1+e) (01+0)*
Ullman: The language of all strings whose no of 0’s is divisible by five.
Answer: (1*01*01*01*01*01*)*
Unknown: The language of all strings whose no of 0’s are even and no of 1’s are odd.
Answer: X = (1+010) //base case
	 Y = (1010+1001+0101+0110+00+11)* //recursive case
 	 Final RE = YXY
Ullman: The set of strings over alphabet {a,b,c} containing at least one ‘a’ and at least one ‘b’.
Answer: X = (a+b+c)*
	Final RE = XaXbX + XbXaX
Ullman: The set of all strings of 0’s and 1’s such that every pair of adjacent 0’s appears before any pair of 	adjacent 1’s.
Answer: X = Does not contain 00 as a sub-set.
	X = (01+1)*(0+e)
	Final RE = (0+1)*11X + X
[bookmark: _Toc235236465]APPENDIX B
[bookmark: _Toc235236466]SOLUTION TO SELECTED QUESTIONS FROM THE IN-COURSE EXAMS OF PREVIOUS YEARS

1. Draw the transition diagram of the DFA accepting the set of all strings over {0, 1} that contain 1010 as a substring.
 (
A
B
C
D
E
1
0
0
1
0, 1
0, 1
)

Step 1: (Draw the NFA)
 (
A
B
C
D
E
1
0
0
1
0, 1
0
0
1
1
)

Step 2: (Make it DFA)

2. Draw an FA accepting the language {x0y : x, y {0, 1}* and |x| + |y| = 5}.
Step 1: (Draw the NFA accepting the language where |x| = 5)
 (
A
B
C
D
F
0, 1
0, 1
0, 1
0, 1
E
0, 1
)
Step 2: (Draw the NFA accepting the language where |y| = 5)
 (
G
H
I
J
L
0, 1
0, 1
0, 1
0, 1
K
0, 1
)
Step 3: Now, as the string is like x0y, therefore, we must start from the NFA of step 1 and finish at the 	NFA at step 2. However, we have to insert a 0-transition from the DFA of step 1 to the DFA of 	step 2. Now, if |x| = 0, then |y| must be 5. So, we can insert a 0-transition from state A to G.
 (
G
H
I
J
L
0, 1
0, 1
0, 1
0, 1
K
0, 1
A
B
C
D
F
0, 1
0, 1
0, 1
0, 1
E
0, 1
0
)
Step 4: Similarly, if |x| = 1, then |y| must be 4. So, we can insert a 0-transition from state B to H. And in 	similar manner, we get:
 (
G
H
I
J
L
0, 1
0, 1
0, 1
0, 1
K
0, 1
A
B
C
D
F
0, 1
0, 1
0, 1
0, 1
E
0, 1
0
0
0
0
0
0
)

3. Simplify the RE as much as possible: a*b + a*bbb* + a* and draw the equivalent FA.
 a*b + a*bbb* + a*
= a*(b + bbb* +)
= a*(b (+ bb*) +)

= a*(bb* +)	[+ xx* = x*]

= a*b*		[+ x* = x*]
 (
A
B
a
b
)
Equivalent -NFA:
 (
A
B
b
a
b
)
Equivalent NFA:
 (
A
B
b
a
b
a
) (
a
,
b
)
Equivalent DFA:

4. Find a string that
(i) is represented by both the regular expressions r and s and
(ii) is not represented by either r or s
where r = a* + b* and s = ab* + ba* + b*a + (a*b)*
(i) a
(ii) aba

5. Write down an RE that represents all strings w over {0, 1} such that the first and last characters of w are the same and w contains at least three 0’s.
Step 1: The string contains at least three 0’s.
000
Step 2: There may be any number of 0’s or 1’s before and after each 0.
(0 + 1)* 0 (0 + 1)* 0 (0 + 1)* 0 (0 + 1)*
Step 3: The first and the last characters must be the same. Let, the first and last characters are 1.
1 (0 + 1)* 0 (0 + 1)* 0 (0 + 1)* 0 (0 + 1)* 1
Step 4: Let, the first and last characters are 0.
0 (0 + 1)* 0 (0 + 1)* 0
Step 5: Combine the two using union.
1 (0 + 1)* 0 (0 + 1)* 0 (0 + 1)* 0 (0 + 1)* 1 + 0 (0 + 1)* 0 (0 + 1)* 0
6. Given a DFA accepting a language L, how do we construct the DFA accepting the complement of L? Does your construction work for NFAs and NFAs with epsilon transitions? Justify your answer. [Marks: 4]
Given a language L, we can construct the complement DFA of L by making the final states of the DFA accepting L as non-final and vice-versa.
This construction does not work for NFAs or -NFAs. Because, in NFAs or -NFAs, there may be states which have multiple transitions. In that case, the final states cannot be identified properly and hence the construction will not work. But in DFAs, the final states are fixed and can be identified properly. So, this construction works for DFAs only.
For example, let L = {w | w ends with 0}.
Then, L' = {w | w does not end with 0}.
 (
A
B
0
0, 1
0
)
Now, the NFA for L is:
 (
A
B
0
1
0
1
)
And the DFA for L is:
 (
A
B
0
1
0
1
)
Therefore, the DFA for L' is:

 (
A
B
0
0, 1
0
)
But the NFA for L' would be:
Which is not correct, as it also accepts the strings ending with 0.

7. Construct a DFA accepting binary numbers that are divisible by 3.
 (
A
C
0
0
0
1
B
1
1
)
8. Simplify the following RE: (a + b)(+ aa)+ + (a + b).
	 (a + b)(+ aa)+ + (a + b)
= (a + b) ((+ aa)+ +)

= (a + b)(+ aa)*		[x+ + = x*]

= (a + b)(*(aa)*)*		[(x + y)* = (x*y*)* = (x* + y*)*]
= (a + b)((aa)*)*

= (a + b)(aa)*		[(x*)* = x*]
9. Find an FA that accepts all strings over {a, b} that begin or end with aa or bb.
Step 1: RE that accepts all strings that begin with aa or bb:
(aa + bb)(a + b)*
Step 2: RE that accepts all strings that end with aa or bb:
 (a + b)*(aa + bb)
Step 3: RE that accepts all strings that begin or end with aa or bb:
(aa + bb)(a + b)* + (a + b)*(aa + bb)
Step 4: NFA for (aa + bb)(a + b)*:
 (
A
D
b
a
a
B
b
a
, b
C
)
Step 5: NFA for (a + b)*(aa + bb):
 (
E
H
b
a
a
F
b
a
, b
G
)
Step 6: -NFA for (aa + bb)(a + b)* + (a + b)*(aa + bb):
 (
E
H
b
a
a
F
b
a
, b
G
A
D
b
a
a
B
b
a
, b
C
S
)
Equivalent NFA:
 (
E
H
b
a
a
F
b
a
, b
G
D
b
a
a
B
b
a
, b
C
S
a, b
a
b
)
10. Draw the transition diagram of the DFA accepting the languages over {0, 1}
(i) The set of all strings that has at least two 0’s.
(ii) The set of all strings that does not end in 0010.
 (
A
B
C
0
0
0, 1
1
1
)
(i)

(ii) Step 1: DFA that accepts strings that end with 0010:
 (
A
B
C
D
E
0
0
0
1
0
1
0
1
1
1
)
Step 2: DFA that accepts strings that does not end with 0010:
 (
A
B
C
D
E
0
0
0
1
0
1
0
1
1
1
)

11. Write down a regular expression for the language L = {w {a, b}* | w does not contain an occurrence of ab}.
Step 1: w should not contain ab. So, the RE for w cannot be a*b, ab* or a*b*. However, the RE for w 	 may be , a*, b*, or b*a*. Note that the RE b*a* includes the REs , a* and b*.
Step 2: Therefore, the final RE is b*a*.

12. (
1
2
3
4
6
5
7
a
b
a
b
a
b
a
b
a
b
a
b
a
b
)Find and draw the minimum-state DFA for the DFA below:
Transition Table of the given DFA:
	State
	a
	b

	→ 1
	2
	3

		2
	4
	5

		3
	6
	7

	* 4
	4
	5

		5
	6
	7

	* 6
	4
	5

	* 7
	6
	7

Minimization of the given DFA:
Step 1: Separating final and non-final states, we get the following groups:
{1, 2, 3, 5} {4, 6, 7}
Step 2: From the group {4, 6, 7}, we separate the group {4, 6} as they move to the non-final group {1, 2, 	3, 5} for the input symbol b.
	{1, 2, 3, 5} {4, 6} {7}
Step 3: From the group {1, 2, 3, 5}, we separate the group {3, 5} as they move to the final group {7} for 	the input symbol b.
	{1, 2} {3, 5} {4, 6} {7}
Step 4: From the group {1, 2}, we separate the elements into two groups as for the symbol a, state 1 	remains in the same group whereas state 2 moves to the group {4, 6}.
	{1} {2} {3, 5} {4, 6} {7}
Diagram of the minimum-state DFA:
 (
1
2
35
46
7
b
a
b
a
b
a
b
a
b
a
)

13. Find the regular expression equivalent to the DFA in the following figure:
	States
	Inputs

	
	0
	1

	→* Q1
	Q1
	Q2

	Q2
	Q3
	Q2

	Q3
	Q1
	Q4

	Q4
	Q1
	Q2

Step 1: Draw the transition diagram.
 (
Q
1
Q
2
Q
3
Q
4
1
0
1
0
1
0
1
0
)
Step 2: Eliminate Q2.
 (
Q
1
Q
3
Q
4
11
*
0
1
0
0
11
*
0
0
)
Step 3: Eliminate Q3.
 (
Q
1
Q
4
11
*
0
1
0
11
*
00
11
*
0
1
0
 +
11
*
0
0
)
 (
Q
1
Q
4
11
*
0
1
0 +
11
*
00
11
*
0
1
0 +
11
*
00
)
Step 4: Eliminate Q4.
 (
Q
1
11
*
0
1

(
11
*
0
1
)
*

(
0 +
11
*
0
0
)
0 + 11
*
00
)
 (
Q
1
0 + 11
*
00

+

11
*
0
1

(
11
*
0
1
)
*

(
0 +
11
*
0
0
)
)
Step 5: Eliminate loop.
 (
Q
1
(
0 + 11
*
00

+

11
*
0
1

(
11
*
0
1
)
*

(
0 +
11
*
0
0
)
)
*
)
Final RE: (0 + 11*00 + 11*01 (11*01)* (0 +11*00))*

32

image3.png
Track 1
Track 2
Track 3

State

Storage

<

image4.png

image5.jpeg
(@

Figure 3.3|
A simplified finite automaton reco;
diagram; (b) Transition table,

. S
A A B
state | B 10 B
10 A B
®)

gnizing {0, 1}*{10}: (a) Transition

image6.jpeg
O+-@-@~@

5"(q. abc) = 8(8*(q, ab), ¢)
=48(8(5*(q.a). b))
=8(8(8*(q, Aa), b), 0)
=06(8(3(3"(g, A), a), b, c)
=38(8(3(g,a). b))
=3(5(q1,b), 0)
=3(q2,¢)
=q3

image7.png
0,1

Start G . .

Figure 2.9: An NFA accepting all strings that end in 01

image8.png
0 |1

—q
aQ
*q2

{q0,m} | {ao}
0
0

Transition table for an NFA that
accepts all strings ending in OL

image9.png
In Fig. 2.18 is an e-NFA that accepts decimal numbers consisting of:
1. An optional + or — sign,
2. A string of digits,
3. A decimal point, and
4. Another string of digits. Either this string of digits, or the string (2) can
be empty, but at least one of the two strings of digits must be nonempty.

01,....9 0,1,..,9

€ +-]. 101,...,9
@ [{a} [{a} [0 []
—(% (% a0 |0 |{e}|{nae)
0,1,0..9, et |0 [{gs}
g | {as} | 0 [] {as}
@ |] {a:} | 0
g | @ [[) 0

Figure 2.20: Transition table for Fig. 2.18

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png
Assume we begin with automaton

b,

We now apply rule (2) to get the automaton

°Q
OO R0

image16.png
Apply rules (2) and (3) to get the automaton

ab®ab

—’ ab'ba'a @

Hence the regular expression is ab*ab v ab*ba*a.

image17.png
Given the automaton

image18.png
we go through the following sxeps
@ @\ .
o\@ @/

/’@ @\
© @ @/.

/\
oWl G)
(aa*bVbja

to get the regular expression ((aa*h v b)a) v aa*b).

image19.png
Given the automaton

iy
‘@

o”@/@\@

-®%

we go through the following steps,

(@vi)*

~OLOT0

(@vi)*

4’va, _avb @

image20.png
to get the regular expression (a v b)(@ v b)™(a v/ b). Note that the process is not
unique and that by taking different steps, we would have had a different, but
equivalent, regular expression. Thus both expressions would have described the
same set.

image21.png

image22.png

image23.png

image24.png
s ©f

image25.png

image26.png

image27.png

image28.png
Example 3.12 Given the automaton (M = (X, Q. s0. Y. F)

which has A-moves, we construct M’ = (S, Q',s;, Y', F') containing no
emoves: E(so) = (s, 51,52}, E(s1) = {s1,52), E(s2) = {sa). and E(s3) =
{50, 51. 52, 53). Denote these sets by s, s{, 53, and s} respectively. Then ¥’
is given by the following table

<
So 53 i)
o0 s s
)

5 5 s 2

image29.png
giving the 2-free automaton

Both automata generate the language a*b*c*.

image30.png
Consider the nondeterministic automaton N/

ro
»L.@J.

Construct an a-arrow from {so} to the set of all states so that there is an a-arrow
from so to that state. Since there is an a-arrow from so to so and an a-arrow from
51051, we construct an a-arrow from {so) t0 {so, s,). There is no b-arrow from
50 to any state. Hence the set of all states such that there is a b-arrow to one of
these states is empty and we construct a b-arrow from {so} to the empty set 2.
We now consider the state {so, s1}. We construct an a-arrow from {so, 1} to the
set of all states such that there is an a-arrow from either so or s, to that state.
Thus we construct an a-arrow from {so, s, 1o itself. We construct a b-arrow
from {so, 51 to the set of all states such that there is a b-arrow from either so
or s, to that state. Thus construct a b-arrow from {so, 1) t {s2). Since there
are 0 a-arrows or b-arrows from any state in the empty set to any other state,
we construct an a-arrow and a b-arrow from the empty set to itself. Consider
{s2). Since there is no a-arrow from 2 to any other state, we construct an a-
arrow from {s} to the empty set. Since the only b-arrow from sz is to itself, we
construct a b-arrow from (s} to itself. The acceptance states consist of all sets

image31.png
which contain an element of the terminal set of V. In this case {s,} is the only
acceptance state. We have now completed the state diagram

o~
0@

which is easily seen to be the state diagram of a deterministic automaton. This
automaton also reads the same language as N, namely the language described
by the expression aa*bb*.

image32.png
Given the nondeterministic automaton

image33.png
Let L; be the language described by the language (ab)*¢ and having automaton
M, with state diagram

MOBO;
~— A

Let L be the language described by the language ab®c* and having automaton
My with state diagram

~@=

To find the state diagram for the language L1 L2, place the state diagram for M)
after the state diagram for M, . Since there is a c-arrow from s, to s2, and s, is.

image34.png
an acceptance state, add a c-arrow from s to 5. The state diagram

is the state diagram for M, the automaton for L;La.

image35.png
Let Ly and L2 and their respective automata be the same as
those in the previous example. To find the automaton for the language for Ly L;
is slightly more complicated. First we place the state diagram for M, after the
state diagram for M. There is an a-arrow from s to s} and 5| is an acceptance
state, 50 place an a-arrow from s} to s;. There is a b-arrow from s{ to's] and |
is an acceptance state, so place a b-arow from s to so. There is a c-arrow from
s{tos3and s} is an acceptance state, so place a c-arrow from s/ to sy. There is
ac-amrow from s} 1o s and s} is an acceptance state, o place a c-arrow from s}
10 5. Then change s, s} so that they are not acceptance states. Thus we have
the state diagram

image36.png
b, c,
0 .
OO OMONO)

which is the state diagram for M, the automaton for Ly L.

image37.png
Let M be the automaton

and M’ be the automaton

RPN
B O
O

b

image38.png
Using the above procedure we have the automaton M" which accepts the union
of M(L) and M’(L) given by

image39.png
Let M be the automaton

and M’ be the automaton

ok
»\b()
b ®Oa

image40.png
Using the above procedure we have the automaton M which accepts the union
of My(L)and Mj(L)

ab

(
®

image41.jpeg

image42.jpeg
Transition Table for Example 1

State/Z 0 1
— qo 9 qs
91 96 92
9 o
q3 9 U3

qa q7 qs

qs 92 U1

9e 9e qa

q1 96 92

image43.jpeg
Table 2.22 Transition Table of Minimum
State Automaton

State/Z 0 1
(90, 94] (91, 971 (3, g5]
(91, 7] [g6] [q2]
[42] (90, 4] [¢2]
(3, g5] [g2] [g6]
[g6] [g6] (90, 94

B —

image44.jpeg
Fig. 2.13 Minimum state automaton of Example 1.

image45.png

image46.png
(b)

image47.png
E

N
[N
T
T
A

Figure 5.20: The sole parse tree for @ +a*a

image48.png
I = alblla|Ib|I0| 1
F oo I|(E)

T — F|T«F

E - T|E+T

Figure 5.19: An unambiguous expression grammar

image49.png
0,20/020

1.24/12,
0,0/00
0,1/01
1,0/10 0,0/¢
1,1/11 1.1/7¢
Start O
o
8 2012, €, 20/2Z,
g 0/0
g 1/1

Representing a PDA as a generalized transition diagram

image50.png
The formal notation we shall use for a Turing machine (TM) is similar to
that used for finite automata or PDA’s. We describe a TM by the 7-tuple

=(@,5T,6,9,B,F)
whose components have the following meanings:

Q: The finite set of states of the finite control.

3: The finite set of input symbols.

I': The complete set of tape symbols; T is always a subset of I'.
&

: The transition function. The arguments of §(g, X) are a state ¢ and a
tape symbol X. The value of (g, X), if it is defined, is a triple (p,Y, D),
where:

1. p is the next state, in Q.
2. Y is the symbol, in T, written in the cell being scanned, replacing
whatever symbol was there.

3. Dis a direction, either L or R, standing for “left” or “right,” respec-
tively, and telling us the direction in which the head moves.

go: The start state, a member of Q, in which the finite control is found ini ally.

B: The blank symbol. This symbol is in T" but not in %; i.e., it is not an input
symbol. The blank appears initially in all but the finite number of initial
cells that hold input symbols.

F: The set of final or accepting states, a subset of Q.

image51.png
Y/ y—=>

Figure 8.10: Transition diagram for a TM that accepts strings of the form 071"

image52.png
Symbol

State 0 1 X Y B
w0 [(a,X,R) - - (43, Y, R) -
a | (@,0,R) (Y,L) - (g1, Y, R) -
@ | (20L) = (90, X,R) (g,Y,L) -
[- - - (s, Y;R) (g1,B,R)
@ S S S S -

A Turing machine to accept {0"1" | n > 1}

image53.wmf
Q

oleObject1.bin

oleObject2.bin

oleObject3.bin

oleObject4.bin

oleObject5.bin

image1.png

image2.png
Finite

control
Memory O*W #*w #IO"W2 #11*w #100% w, **
Instruction o1t)
counter ! / /
Memory

‘ /
address e

Computer’s
Input file

Scratch

